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a b s t r a c t

This paper presents an algorithm that solves optimization problems on a matrix manifold MDRm�n

with an additional rank inequality constraint. The algorithm resorts to well-known Riemannian opti-
mization schemes on fixed-rank manifolds, combined with new mechanisms to increase or decrease the
rank. The convergence of the algorithm is analyzed and a weighted low-rank approximation problem is
used to illustrate the efficiency and effectiveness of the algorithm.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider low-rank optimization problems of the following
form:

min
XAMr k

f ðXÞ; ð1Þ

where M is a submanifold of Rm�n,

Mrk ≔ fXAMj rankðXÞrkg

with krminðm;nÞ, and f is a real-valued function on Mrk. The
notation

Mr ≔ fXAMj rankðXÞ ¼ rg ð2Þ

will also be used frequently. Typical choices for M are Rm�n itself
and the Frobenius sphere, i.e., the set of all m� n matrices of fixed
Frobenius norm.

Applications of (1) appear notably in machine learning, e.g., for
collaborative filtering [1,2], multi-class classification [3], multi-
response regression [4,5], learning a function over pairs of points
[6], and learning a low-rank similarity measure [7]. Applications of
low-rank optimization are also found in other areas such as sys-
tems and control [8,9] and computer vision [10,11].

An increasingly popular way to approach problem (1) is to
consider the related but simpler problem minXARm�n

k
f ðXÞ, where

Rm�n
k ¼ fXARm�n j rankðXÞ ¼ kg in view of the notation (2); see, e.g.,

[7,12–14]. Since Rm�n
k is a submanifold of Rm�n of dimension ðmþ

n�kÞk (see [15, Chapter 5, Proposition 1.14]), this simpler problem
can be solved using Riemannian optimization techniques such as
those presented in [16–20]. However, a disadvantage is that the
manifold Rm�n

k is not closed in Rm�n, which jeopardizes the well-
posedness of the optimization problem and complicates the con-
vergence analysis of optimization methods if the iterates cannot be
assumed to stay safely away from Rm�n

rk�1.
Very recently a more global view of a projected line-search

method on Rm�n
rk ¼ fXARm�n j rankðXÞrkg along with a con-

vergence analysis has been developed in [21]. In [22], the results of
[21] have been exploited to propose an algorithm that successively
increases the rank by a given constant. Its convergence to critical
points can be deduced from [21, Theorem 3.9]; it relies on the
assumption, often satisfied in practice, that the limit points have
rank k. Under this assumption, a line-search method on Rm�n

rk is
ultimately the same as a line-search method on Rm�n

k .
In this paper, we develop a Riemannian rank-adaptive algo-

rithm for the optimization problem (1). Its main features are as
follows. First, the feasible set Mrk is more general than the set
Rm�n

rk considered in [21,22]. Second, the proposed algorithm
increases or decreases the rank by an adaptively chosen amount as
the iteration proceeds. The rank update mechanism is governed by
parameters that the user can adjust to strike a balance between
the goals of (i) saving on space and time complexity by reducing
the rank and (ii) achieving higher accuracy by increasing the
rank. Finally, theoretical convergence results are given, and the
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proposed method is shown on numerical experiments to outper-
form state-of-the-art methods on a weighted low-rank approx-
imation problem.

The rest of this paper is organized as follows. Standing
assumptions are gathered in the next section. The proposed
method is presented in Section 3 and analyzed in Section 4.
Implementation practicalities are discussed in Section 5. Numer-
ical experiments are reported in Section 6, and conclusions are
drawn in Section 7.

A preliminary version of this work can be found in [23].

2. Notation, definitions, and standing assumptions

The notation Mr and Mr r defined above will be used fre-
quently. The notation f F stands for an extension of f on M (see
Assumption 3 below) and fr denotes the restriction of f to Mr .

Throughout the paper, the following assumptions are in force.

Assumption 1. Mr DMr r for all positive integers rrk, where
Mr stands for the closure of Mr .

Observe that, since the closure of an intersection is a subset of
the intersection of the closures and since Rm�n

r ¼Rm�n
r r , it follows

that the above assumption holds whenever the submanifold M is
a closed subset of Rm�n. It is useful to bear in mind that a sequence
of rank-rmatrices can converge to a lower-rank matrix but not to a
larger-rank matrix.

The next assumption is crucial to the Riemannian aspect of the
proposed Riemannian rank-adaptive method:

Assumption 2. Mr is a submanifold of Rm�n, for all positive
integers rrk.

We need the cost function f to be sufficiently smooth for
gradient-descent techniques to be applicable:

Assumption 3. The cost function f admits a continuously differ-
entiable extension f F on a neighborhood of Mrk in M.

The reader will observe that neither the size of the neighbor-
hood nor the choice of the extension will have an impact on the
proposed method.

The tangent cone to a set SDRm�n at XARm�n is the set

TXS ≔ f _γ ð0ÞjγAC1; γð0Þ ¼ X; (δ40 : 8 tA ð0; δÞ : γðtÞASg;
where _γ ð0Þ denotes the derivative of curve γ at 0. This definition of
TXS is motivated by the goal of conducting line searches along
smooth (i.e., C1) curves. Observe that TXS¼∅ when X =2S .

We point out that, for any XAMr , the tangent cones are nested
as follows: TXMr0DTXMr1D⋯DTXM. The tangent cones TX
Mr r and TXM are actually linear spaces since M and Mr are
manifolds and Mr r is identical to Mr locally around XAMr .
Moreover, we have TXMr s ¼∅ for all sor. This justifies the fol-
lowing definition.

Definition 1 (update-rank). Let XAM and ηXATXM. The update-
rank of ηX is the unique integer r such that ηXATXMr r⧹
TXMr r�1, with A⧹B denoting the set difference fxAAjx=2Bg.

For the purpose of conducting line searches along given
directions while keeping the rank under control, we will need M
to be endowed with a curves-selection mechanism defined as
follows, where TM≔⨆XAMTXM denotes the tangent bundle of
M.

Definition 2 (Rank-related retraction). In the context of problem
(1), a mapping ~R : TM-M is a rank-related retraction if, for all
XnAMrk, there exist δXn

40 and a neighborhood U of Xn in Mrk

such that, for all XAU and all ξXATXMrk with JξX J ¼ 1, it holds
that (i) ~RXð0Þ ¼ X, where ~RX denotes the restriction of ~R to TXM
and 0 stands for the zero vector in TXM, (ii) ½0; δXn

Þ 3 t↦ ~RXðtξXÞ is
smooth and ~RXðtξXÞAMr ~r for all tA ½0; δXn

Þ, where ~r is the
update-rank of ξX, (iii) d

dt
~RXðtξXÞJ t ¼ 0 ¼ ξX .

Note that ~RX is not necessarily a retraction on M in the sense
given in [24,16], since it may not be smooth on the tangent bundle
TM. A specific rank-related retraction is given in Section 5.

Observe that in point (ii) of Definition 2, we require ~RXðtξXÞ to
belong to Mr ~r but not necessarily to M~r . Indeed we found that
the condition ~RXðtξXÞAM~r would be cumbersome to enforce
while being unnecessary for the convergence analysis.

We let grad f FðXÞ denote the Riemannian gradient of f F at
XAM. It can be obtained by considering any smooth extension of
f F around X in Rm�n and taking the projection to TXM of its
Euclidean gradient at X; see [16, (3.37)]. Likewise, grad f rðXÞ
denotes the Riemannian gradient of fr at XAMr , and it is obtained
by projecting grad f FðXÞ onto the tangent space TXMr .

Throughout the paper, J � J denotes the Frobenius norm and
〈�; �〉 the Frobenius inner product.

Consider XAM, ξATXM, and a positive integer r. The set of
best approximations of ξ in TXMr r is denoted by PTXMr r ðξÞ. Note
that this set may contain more than one point. (In the case where
M¼Rm�n, this follows directly from (12) and the non-uniqueness
of a best low-rank approximation.) However, as indicated in [21,
Section 2.1] (or see Lemma 1 below), all its elements have the
same norm, hence JPTXMr r ðξÞJ is well defined. We say that X is a
critical point of f if JPTXMr k

ðgrad f FðXÞÞJ ¼ 0. (It can be seen that
this notion does not depend on the chosen extension f F of f.)

3. A Riemannian rank-adaptive algorithm

The proposed method is listed in Algorithm 3, but we invite the
reader to first read the more reader-friendly description in Section 3.1
and to refer to the pseudocode in Algorithm 3 when needed.

3.1. Algorithm description

We first discuss the two subprograms, Algorithms 1 and 2,
called by Algorithm 3.

Algorithm 1. Rank reduction with threshold Δ.

Require: ðX;ΔÞ, where XARm�n and Δ40.
1: Find the singular values σ1Zσ2Z⋯Zσminfm;ngZ0 of matrix

X;
2: Set r to be the largest integer r such that σr=σ1ZΔ;
3: Choose X̂Aarg minYAMr r JY�X J;
4: Return ðX̂ ; rÞ.

Algorithm 2. Rank-related Armijo backtracking.

1: Inherit ~R;Xn;β;α;ηn;M~r ; f ;σ from Algorithm 3 where
Algorithm 2 is called;

2: Compute the smallest nonnegative integer m such that
(i) ~RXn ðβmαηnÞ belongs to Mr ~r , and

(ii) f ðXnÞ� f ð ~RXn ðβmαηnÞÞZσ〈�grad f FðXnÞ;βmαηn〉Xn ;
3: Return tn’βmα .

The output X̂ of Algorithm 1 is a best approximation of X in
Mr r , where r is the number (counting multiplicities) of singular
values of X that are larger than σ1Δ, with σ1 being the largest
singular value of X. Observe that X̂ is simply X in the plausible case
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