
Ordered Decompositional DAG kernels enhancements

Giovanni Da San Martino a, Nicolò Navarin b,n, Alessandro Sperduti b

a Qatar Computing Research Institute, HBKU, P.O. Box 5825, Doha, Qatar
b Department of Mathematics, University of Padova, via Trieste 63, Padova, Italy

a r t i c l e i n f o

Article history:
Received 12 July 2015
Received in revised form
23 December 2015
Accepted 27 December 2015
Available online 27 February 2016

Keywords:
Kernel methods
Kernel functions
Graph kernels
Classification

a b s t r a c t

In this paper, we show how the Ordered Decomposition DAGs (ODD) kernel framework, a framework
that allows the definition of graph kernels from tree kernels, allows to easily define new state-of-the-art
graph kernels. Here we consider a fast graph kernel based on the Subtree kernel (ST), and we propose
various enhancements to increase its expressiveness. The proposed DAG kernel has the same worst-case
complexity as the one based on ST, but an improved expressivity due to an augmented set of features.
Moreover, we propose a novel weighting scheme for the features, which can be applied to other kernels
of the ODD framework. These improvements allow the proposed kernels to improve on the classification
performances of the ST-based kernel for several real-world datasets, reaching state-of-the-art perfor-
mances.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The increasing availability of data in structured form, such as
trees [1] or graphs [2–4], has led to the development of machine
learning techniques able to deal directly with such types of data.
Among these, kernel methods, such as Support Vector Machines
(SVM) [5], have become very popular due to their generalization
ability and state of the art performances in many tasks, such as
relationship extraction [6], analysis of RDF data [7], action recog-
nition [8], text categorization of biomedical data [9] and bioin-
formatics [10].

The class of kernel methods comprises all those learning
algorithms which do not require an explicit representation of the
input, but only information about the similarities among them. A
simple way of assessing the similarity between two objects
described by a set of features is to compute the dot product of
their representation in feature space. If a “similarity” function
kð�; �Þ, corresponding to a dot product 〈�; �〉 in feature space, is
available, the intermediate step of explicitly representing the data
can be avoided. In fact, computing kðx1; x2Þ implicitly corresponds
to perform a nonlinear transformation of the input vectors x1 and
x2 via a function ϕð�Þ and then to compute the dot product of the
resulting vectors ϕðx1Þ and ϕðx2Þ. The function ϕð�Þ projects the
input vectors into a feature space of much higher (possibly infi-
nite) dimension where it is more likely to accomplish the learning

task. Kernel methods generally formulate a learning problem as a
constrained optimization one, where an objective function com-
bining an empirical risk term with a (quadratic) regularizer must
be minimized. If the employed kernel function is symmetric
positive semidefinite, the problem is convex and thus has a global
minimum [5].

Any kernel method can be decomposed into two modules: (i) a
problem specific kernel function; (ii) a general purpose learning
algorithm (the solver). Since the solver interfaces with the pro-
blem only by means of the kernel function, it can be used with any
kernel function, and vice versa. Examples of popular kernel
methods are the perceptron [11] for the on-line setting, and the
Support Vector Machines [5] for the batch setting. Note that,
provided an appropriate kernel function is given, any kernel
method can be applied to any type of data. More importantly, the
kernel function encodes all the information about the input data,
thus the definition of appropriate kernel functions is crucial for the
outcome of the learning algorithm.

A popular strategy for defining kernel functions for structured
data is to decompose the structures into their constituent parts,
and then, for each pair of parts, apply a local kernel [12]. While this
strategy has been proved successful for strings and trees [13–18], it
is not directly applicable to graphs because of the computational
complexity issues which arise: representing a graph in terms of its
subgraphs is not feasible since subgraph isomorphism, an NP-
complete problem, should be solved for each pair of subgraphs. In
[19] it has been demonstrated that any kernel whose feature space
mapping is injective is as hard to compute as graph isomorphism,
an NP problem that still is not known whether it is in P or if it is
NP-complete. Due to this limitation, the available strategies for

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.12.110
0925-2312/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: gmartino@qf.org.qa (G. Da San Martino),

nnavarin@math.unipd.it (N. Navarin), sperduti@math.unipd.it (A. Sperduti).

Neurocomputing 192 (2016) 92–103

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.12.110
http://dx.doi.org/10.1016/j.neucom.2015.12.110
http://dx.doi.org/10.1016/j.neucom.2015.12.110
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.110&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.110&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.110&domain=pdf
mailto:gmartino@qf.org.qa
mailto:nnavarin@math.unipd.it
mailto:sperduti@math.unipd.it
http://dx.doi.org/10.1016/j.neucom.2015.12.110


building kernels are: (i) restricting the input domain to a class of
graphs for which isomorphism can be checked quickly [20]; (ii)
select a priori a set of features, usually corresponding to a specific
type of substructure, such as walks [19], paths [21,22], subtree
patterns [23,24]. The former approach can be applied to a limited
type of graphs, the latter tends to have a limited flexibility: when
the available kernels are not relevant to the task, a new one has to
be designed. However, defining an efficient symmetric positive
semidefinite kernel, corresponding to the desired feature space,
can be an extremely difficult task. All the above approaches dis-
card information about the original graph and are effective only
when the selected features are relevant for the current problem.
We propose to design graph kernels as follows: first transform the
graphs into simpler structures, i.e. multisets of directed acyclic
graphs (DAGs), and then extend the definition of a large class of
already available kernels for trees to DAGs. Our approach allows
the application of the vast literature on kernels for trees, which
consists of fast and/or very expressive kernels, to the graph
domain.

Generally speaking, a serious drawback which prevents many
of the kernels listed above to be applied to large datasets is their
computational time complexity. Those kernels which can be
applied to large datasets exploit a “limited” number of features to
represent a graph. For example, the kernel proposed in [24] has a
linear complexity in the number of edges of the graphs because
any graph is represented in the feature space by a number of non-
zero features which is proportional to the number of nodes of the
graph. On the other hand, a too compact representation of a graph
in feature space may have a negative impact on the effectiveness
of the kernel because of a reduced discrimination ability.

In this paper, we tackle this problem by proposing various
enhancements to a fast graph kernel based on the Subtree kernel
for trees (ST) [25]. Among these, the main contribution is a novel
tree kernel, which has the same worst-case complexity of the ST
kernel, while the size of its feature space is much larger.

The paper is structured as follows. Section 2 introduces some
basic notation and definitions. Section 3 recalls the ODD frame-
work, of which the proposed kernels are instances. Section 4
describes the main contributions of the paper: the STþkernel for
DAGs and a novel weighting scheme for the features, which can be
applied to other kernels of the ODD framework. Section 5 dis-
cusses some related kernels for graphs, and Section 6 provides
experimental evidence of the effectiveness of the proposed
approaches. Finally, Section 7 draws conclusions.

The paper extends the work in [26] by adding: (i) a self-
contained and simplified description of the STþkernel; (ii) a novel,
more effective, feature weighting scheme; (iii) an extended and
revised “Related Work” section; (iv) a novel set of experiments
which are now performed on much larger benchmark datasets and
for a larger number of competing graph kernels; (v) a comparison
among empirical execution times of the various experimented
kernels.

2. Notation

A graph is a triplet G¼ ðV ; E; LÞ, where V (alternatively VG) is the
set of nodes (jV j is the number of nodes), E the set of edges and LðÞ
a function returning the label of a node. All labels are obtained from
a fixed alphabet A. A graph is undirected if ðvi; vjÞAE3ðvj; viÞAE,
otherwise it is directed. A path in a graph is a sequence of nodes
v1;…; vn such that viAV ;1r irn, ðvi; viþ1ÞAE and 81r irn;1r
jon; ja i: viavj (no node, except the first one, can appear twice in
the same path). A cycle is a path for which v1 ¼ vn; a cycle is even/
odd if its number of nodes is even/odd, respectively. A graph is
connected if there exists a path connecting each pair of nodes. A

connected graph is rooted if exactly one node has no incoming
edges. A graph is ordered if the set of neighbors of each node is
ordered. A tree is a rooted connected directed acyclic graph where
each node has at most one incoming edge. A subtree of a tree T is a
connected subset of nodes of T. A proper subtree is a subtree
composed of a node and all of its descendants. Given a node v of a
tree, ρðvÞ represents the outdegree of v, i.e. the number of nodes
connected to v. We will use ρ as the maximum outdegree of a node
in either a tree or a graph. The depth depthðvÞ of a node v is the
number of edges in the shortest path between the root of the tree
and v. If the tree is ordered, chv½ j� represents the j-th child of v and
chsv½ j1; j2;…; jn� indicates the set of children of v with indices j1,
j2;…; jn. Given a graph G and a node vAVðGÞ, we define a subtree-
walk of size h as the tree obtained by the following procedure: the
root of the tree is v; at each step i, with 1r irh, and for each
current leaf node vj of the tree, any neighboring node of vj in G is
added to the tree as a child of vj. Note that, when h41, typically a
node of G can appear multiple times in the same subtree-walk.
Given a DAG D and a node viAVðDÞ, we define a tree-visit, denoted

by D
vi
, as the tree resulting from the visit of D starting from the node

vi. Such visit returns all the nodes of D reachable from vi. If a node vj
can be reached more than once, more occurrences of vj will appear

in D
vi
(see Fig. 2b for an example).

3. Preprocessing: from graphs to multisets of DAGs

This section recalls the ODD-Kernels framework for graphs [27].
The idea of our approach is to transform the graphs into simpler
structures, i.e. DAGs, and then apply a kernel for such structures.
The following subsections explain each step of the transformation.

3.1. From graph to DAGs

The graph G is mapped into a multiset of DAGs DDG

¼ fDDvi
G jviAVGg, where DDvi

G ¼ ðVvi
G ; E

vi
G ; LÞ is obtained by keeping

each edge in the shortest path(s) connecting vi with any vjAVG.
From a practical point of view, DDvi

G can be built by performing a
breadth-first visit on the graph G starting from node vi and
applying the following rules:

1. during the visit a direction is given to each edge; if vj is reached
from vi in one step, then ðvi; vjÞAEviG (note that edge ðvj; viÞ is not
added to EviG );

2. edges connecting nodes reached at level l of the visit to nodes
reached at level go l are not added to EviG (such edges would
induce a cycle in DDvi

G ).

For every choice of G and vi, a single Decompositional Dag DDvi
G is

generated. By repeating the procedure for each node of the graph,
jV j DAGs are obtained. Fig. 1 shows the four DDs obtained from
the undirected graph in Fig. 1a. Note that when the same node is
reached simultaneously (at the same level of the visit) from
different nodes, then all involved edges are preserved. For exam-
ple, when considering the visit at level 2 starting from node s, the
node d is reached simultaneously by edges (b, d) and (e, d), and
both of them are preserved in the corresponding Decompositional
DAG (see Fig. 1b). In order to reduce the total number of nodes of
DDG

v, we propose to limit the depth of the visits during the
generation of the multiset of DAGs [27] to a constant value h. The
resulting DAG will be referred to as DDv;h

G . Given vAVG, let H be the
number of nodes generated by the visits up to depth h. An upper
bound for H is ρh. Notice, this is a loose bound, in many practical
cases. The total number of nodes of DDG is jVG jH. Note that, if ρ is
constant, then also H is constant.

G. Da San Martino et al. / Neurocomputing 192 (2016) 92–103 93



Download English Version:

https://daneshyari.com/en/article/405824

Download Persian Version:

https://daneshyari.com/article/405824

Daneshyari.com

https://daneshyari.com/en/article/405824
https://daneshyari.com/article/405824
https://daneshyari.com

