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a b s t r a c t

We present an approach for the visualisation of a set of time series that combines an echo state network with
an autoencoder. For each time series in the dataset we train an echo state network, using a common and
fixed reservoir of hidden neurons, and use the optimised readout weights as the new representation.
Dimensionality reduction is then performed via an autoencoder on the readout weight representations. The
crux of the work is to equip the autoencoder with a loss function that correctly interprets the reconstructed
readout weights by associating them with a reconstruction error measured in the data space of sequences.
This essentially amounts to measuring the predictive performance that the reconstructed readout weights
exhibit on their corresponding sequences when plugged back into the echo state network with the same
fixed reservoir. We demonstrate that the proposed visualisation framework can deal both with real valued
sequences and binary sequences. We derive magnification factors in order to analyse distance preservations
and distortions in the visualisation space. The versatility and advantages of the proposed method are
demonstrated on datasets of time series that originate from diverse domains.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Time series1 are sequences of observations that exhibit short or
long term dependencies between them in time. These depen-
dencies can be thought of as manifestations of a latent regime (e.g.
natural law) governing the behaviour of the time series. Machine
learning approaches designed to deal with data of a vectorial
nature have no knowledge of such temporal dependencies. By
introducing a model that accounts for temporal behaviour, algo-
rithms can become “aware” of the sequential nature of the data
and make the most of the available information.

Echo state networks (ESNs) [1] are discrete time recurrent neural
networks that have emerged as a popular method to capture the
latent regime underlying a time series. ESNs have the great advan-
tage that the hidden part, the reservoir of neurons, is fixed and only
the output weights need to be trained. The ESN is thus essentially a
linear model and so the output weights, also known as readout
weights, can thus be easily optimised via least squares. The proces-
sing of structured data has been a topic of research for a long time
[2,3]. Regarding time series, recent attempts [4–6] have exploited the
predictive capabilities of ESNs in regression and classification tasks.
In the unsupervised setting, the work in [7] suggests compressing a
linear state space model through a linear autoencoder in order to
extract vectorial representations of structured data. The work in [8]

considers the visualisation of individual observations belonging to a
single sequence by temporally linking them using an ESN.

In this work, we employ the ESN in the formulation of a
dimensionality reduction algorithm for visualising a dataset of time
series (we extend previous work presented in [9]). Given a fixed
reservoir, the only free parameters in the ESN are in the readout
weight vector which maps the state space to the sequence space.
Thus, an optimised (i.e. trained) readout weight vector uniquely
addresses an instance of the ESN (always for the same fixed reser-
voir) that best predicts on a given sequence. We can also reason
backwards: given an observed sequence, we can train the ESN
(Section 2.1) and identify the readout weight vector that best pre-
dicts the given sequence. Hence, each sequence in the dataset can
be mapped to the readout weight vector that exhibits the best
predictive performance on it. These readout weight vectors in
conjunctionwith the common and fixed reservoir, capture temporal
features of their respective sequences. Representing sequences as
weight vectors constitutes the first part of our proposed approach
(Section 3.1).

The second stage of our approach involves training an auto-
encoder [10] on the obtained readout weight vectors in order to
induce a two-dimensional representation, the visualisation, at the
bottleneck. At the heart of the autoencoder lies the reconstruction
error function which drives the visualisation induced at the bottle-
neck. During training, the autoencoder receives readout weights
as inputs, compresses them at the bottleneck, and outputs an
approximate version of the inputs, the reconstructed readout
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weights. Typically, one would take as the reconstruction error func-
tion the L2 norm between the original readout weights and recon-
structed readout weights. In the proposed work, we equip the
autoencoder with a different reconstruction function that assesses
how well the reconstructed readout weights still predict on the
sequence that it represents. If it predicts well, we deem it a good
reconstruction; if it predicts poorly, we deem it a poor reconstruction
(Section 3.2). An overview of the proposed method is displayed in
Fig. 1.

In Section 6, we show that the autoencoder with the proposed
reconstruction error function is capable of interpreting similarities
between time series better than other dimensionality reduction
algorithms. In Section 7, we discuss the possibility of alternative
formulations of the proposed approach before concluding with
some remarks on future work in Section 8.

2. Preliminary

This section introduces some notation and terminology while
briefly reviewing ESNs and the autoencoder.

2.1. Echo state networks

An ESN is a discrete-time recurrent neural network with fading
memory. It processes time series composed of a sequence of obser-
vations yðtÞAR over time t that we denote here by y¼ ðyð1Þ;…; yðTÞÞ,
where T is the length2 of the sequences. Hence yART�1. Given an
input y(t), the task of the ESN is to make a prediction ŷðtþ1Þ for the
observation yðtþ1Þ in the next time step. Similar to a feedforward
neural network, the ESN comprises an input layer with weights
vARD�1, a hidden layer with weights UARD�D (hence D is the size of
the reservoir) and an output layer with weights wARD�1, the latter
weights w also known as readout weights. However, in contrast to
feedforward networks, ESNs equip the hidden neurons with feedback
connections. The operation of an ESN is specified by the equations:

xðtþ1Þ ¼ hðUxðtÞþvyðtÞÞ; ð1Þ

ŷðtþ1Þ ¼wTxðtþ1Þ; ð2Þ
where xðtÞARD�1 are the hidden activations of the reservoir at time t,
and hð�Þ is a nonlinear function commonly chosen as the tanhð�Þ
function. Bias terms have been omitted in the formulation for the sake
of clarity in notation.

According to standard ESN methodology [1], parameters v and
U in Eqs. (1), (2) are randomly generated3 and fixed. The only
trainable parameters are the readout weights w. Training involves
feeding at each time step t an observation y(t) and recording the

resulting activations xðtÞ row-wise into a matrix XART�D. Usually,
some initial observations are dismissed in order to “washout” [1]
dependence on the initial arbitrary reservoir state (e.g. xð1Þ ¼ 0).
Given matrix X, the following objective function is minimised:

ℓðwÞ ¼ JXw�yJ2: ð3Þ
The above objective can be supplemented by a regularisation

term and so the combined objective is ℓðwÞþμ2 JwJ2. The com-
bined objective can be exactly minimised by solving the pertaining
least squares problem and obtaining w¼ ðXTXþμ2IDÞ�1XTy as the
solution, where ID is the D� D identity matrix. Given this result,
we introduce function gðyÞ that maps a given time series to the
optimal readout weights:

gðyÞ ¼ ðXTXþμ2IDÞ�1XTy¼w: ð4Þ

2.2. Deterministically constructed echo state networks

In the original formulation of the ESN [1] the weights in v and
U are generated stochastically and so are the connections between
the hidden neurons in the reservoir. This makes the training and
use of the ESN dependent on random initialisations. In order to
avoid this source of randomness, we make use of a class of ESNs
that are constructed in a deterministic fashion [11].

Deterministic ESNs make several simplifications over standard
ESNs. All entries in v have the same absolute value of a single scalar
parameter v40. The signs of the entries in v are deterministically
generated by an aperiodic sequence: e.g. a pseudorandom binary
sequence (coin flips), with outcomes 0 and 1 corresponding to �
and þ respectively. Similarly, the entries in U are parametrised by a
single scalar u40. As opposed to random connectivity, determi-
nistic ESNs impose a fixed regular topology on the hidden neurons
in the reservoir. Amongst possible choices, one can arrange the
neurons in a cycle. A cyclic arrangement imposes the following
structure on U: the only nonzero entries in U are on the lower sub-
diagonal U iþ1;i ¼ u, and at the upper-right corner U1;D ¼ u. An
illustration of a cyclic deterministic ESN is shown in Fig. 2.

In this work we employ deterministic ESNs with a cyclic con-
nectivity. Deterministic ESNs have three degrees of freedom: the
reservoir size D, the input weight v and reservoir weight u. Hence, the
triple ðD; v;uÞ completely specifies an ESN. It has been shown
empirically and theoretically (memory capacity) [11] that determinis-
tic ESNs perform up to par with their stochastic counterparts. Training
of a deterministic ESN is performed in exactly the same fashion as in
stochastically constructed ESNs using the objective ℓðwÞ in Eq. (3).

2.3. Autoencoder

The autoencoder [10] is a feedforward neural network that
defines a three hidden layer architecture4 with the middle layer,

Fig. 1. Sketch of proposed method. In a first stage, time series y are cast to readout weights w in the weight space (see Section 3.1). In a second stage, the autoencoder
projects readout weights w onto coordinates z residing in a two-dimensional space, and reconstructs them again as ~w (see Section 3.2). By multiplying with the state space,
given by X, we map the reconstructed readout weights ~w to the sequence space where reconstruction error is measured (see Eq. (7)).

2 In general, each sequence can have its own length Tn. For ease of exposition,
here all sequences have the same T.

3 The spectral radius of the reservoir's weight matrix U is made o1 to
encourage the Echo State Property.

4 To be perfectly precise, we use what is widely considered the standard
autoencoder specified in [12, Section 12.4.2]).
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