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a b s t r a c t

Preserving edge details is an important issue in most of the image reconstruction problems. In this paper,
we propose a multiscale regression framework for image reconstruction from sparse random samples.
A multiscale framework is used here to combine the modeling strengths of parametric and non-
parametric statistical techniques in a pyramidal fashion. This algorithm is designed to preserve edge
structures using an adaptive filter, where the filter coefficients are derived using locally adapted kernels
which take into account both the local density of the available samples, and the actual values of these
samples. As such, they are automatically directed and adapted to both the given sampling geometry and
the samples' radiometry. Both the upscaling and missing pixel recovery processes are made locally
adaptive so that the image structures can be well preserved. Experimental results demonstrate that the
proposed method achieves better improvement over the state-of-the-art algorithms in terms of both
subjective and objective quality.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The emergence of high definition displays in recent years, along
with rapid increase of cheaper digital imaging devices has resulted
in the need for fundamentally new image processing algorithms.
In this work, we address the issue of missing information cor-
rupted by the limitations of the imaging system as well as
degradation processes such as compression [1], in a different way.
This work concentrates on a data-adaptive multiscale regression
framework for reconstruction and enhancement of randomly
sampled images.

The projection onto convex set (POCS) based Papoulis–Gerch-
berg (PG) algorithm [2–3] and Delaunay triangulation based
interpolation [4] are two classic image reconstruction algorithms.
Michael and David proposed a sparse representation-based mor-
phological component analysis (MCA) method [5], which separates
the image into texture and piecewise smooth (cartoon) parts. It is
exploiting both the variational and the sparsity mechanisms. The
method combines the basis pursuit denoising (BPDN) algorithm
and the total-variation (TV) regularization scheme.

The maximum likelihood estimation by random sample and
the local optimization (MLESAC) method [6] is a robust estimator
which adopts maximum likelihood theory with local optimization

(LO). Guided-MLESAC [7] introduced by Tordoff and Murray
completely utilizes matching prior probabilities, which makes
sampling more efficient and finally achieves Bayesian maximum
likelihood estimation, but it requires high cost in calculation.
AMLESAC mentioned by Konouchin [8] adopts modified median
estimator method to estimate initial value of parameter in the
model and enhances likelihood of the output model. The algo-
rithm of MLESAC generally uses some iterative optimized algo-
rithm. It also introduces an accelerated algorithm MLESAC, which
embeds LO into the iterative steps of MLESAC, then guides the
iteration through the result of LO [6].

Classical Kernel Regression [10] is another well known, non-
parametric point estimation procedure. KR approach was useful
for handling image reconstruction from very sparse samples
[10,13]. The non-parametric KR method for image processing
which was a variant of the famous Nadaraya–Watson (NW) esti-
mator [9] was introduced in a nonlocal means denoising algorithm
[18,19]. By using the kernel functions driven by the distances
between existing pixels within a large neighborhood, these non-
local type of non-parametric image models made the algorithm
more robust in recovering very sparse image samples [10]. But, the
classic KR-based method does not explore the inter-scale
similarity.

Takeda et al. generalized this technique to spatially adaptive
steering kernel regression [10], which preserved and restored
details with minimal assumptions on local signal and noise
models. The hybrid image reconstruction (HIR) algorithm [11]
proposed by Guangtao and Zang combined the linear

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.10.127
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: mail2susmy@gmail.com (S. Jacob),

madhu_s_nair2001@yahoo.com (M.S. Nair).

Neurocomputing 189 (2016) 95–105

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.10.127
http://dx.doi.org/10.1016/j.neucom.2015.10.127
http://dx.doi.org/10.1016/j.neucom.2015.10.127
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.127&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.127&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.127&domain=pdf
mailto:mail2susmy@gmail.com
mailto:madhu_s_nair2001@yahoo.com
http://dx.doi.org/10.1016/j.neucom.2015.10.127


autoregressive (AR) parametric model [12] and the kernel regres-
sive (KR) non-parametric model [9] systematically to improve the
modeling efficiency. HIR algorithm utilized the context vectors in
vicinity without considering the local orientation along the image
structures. By incorporating the steering KR technique into the
multiscale framework, both in the restoration of missing pixels as
well as the upscaling of lower scale image to higher resolutions,
we could reconstruct different edge structures more efficiently.

From the above analysis, it is noted that, a unified scheme for
reconstructing the edge, smooth and texture regions with afford-
able computational complexity is desirable. The essence of this
reconstruction is to assign the missing pixels according to the rest
of the image, i.e., being a conditional expectation estimation pro-
blem. The missing pixels are considered as a vector, and its
expectation is given by its surrounding available pixels. Moreover,
the multiscale approach [13,14] is utilized to combine the para-
metric and non-parametric techniques in a single framework. The
missing pixels are successively recovered from significant pixel
loss (from low to high frequencies), and the restored image at a
particular level is in turn used for estimation of the next level. This
approach is shown to be extremely effective for sparse random
samples. Many large-scale structures can be well recovered based
upon the progressively computed low-level results, and this is
impossible for traditional single level reconstruction algorithms.
For the signal recovery and upscaling, a data-adaptive filter [9] is
used here, which directs the kernel along the edges, rather spread
across it. The filter coefficients are derived depending on the
dominant orientation calculated from the local covariance matri-
ces in the selected window. The original image with only ran-
domly selected samples is successively downsampled to form a
multiscale pyramid by replacing the low resolution pixel by the
average of the available high resolution pixels. The missing pixels
in the lowest resolution image (highest level L2) can be recovered
using a data-adaptive non-parametric KR model. This recovery can
be done iteratively to improve the estimation accuracy. The
parametric AR model embedded into a data-adaptive KR frame-
work is then used to upsample the recovered image to a higher
resolution.

The estimates on each level is refined by a non-parametric KR
model which use the upsampled image from previous level as a
prior estimate in the next level. Refined estimate is upscaled again
by a parametric data-adaptive KR model, which can be in turn
used as a prior for next level of reconstruction to get the final
result.

The rest of this paper is organized as follows. Section 2
describes the underlying theory behind our work. The concept of
parametric and non-parametric image modeling, multiscale
approximation, kernel regression and soft-decision interpolation
are discussed. The proposed multiscale regression framework with
an algorithmic description is presented in Section 3. The imple-
mentation details and simulation results are given in Section 4.
Also, the proposed method is compared with classical and the
state-of- the-art image reconstruction algorithms in terms of both
subjective and objective quality. Finally, the paper is concluded in
Section 5.

2. Background theory

2.1. Image models

The estimation of the conditional expectation of Y given an
observation of the context X ¼ xi is as follows

E Y jX ¼ xið Þ ¼
Xn

i ¼ 1
yiPðyijxiÞ ð1Þ

where {yi}, 1 r irn and {xi}, 1r irn are two sets of image pixel
samples. Y is a dependent variable and XARm is an independent
variable that represent a pixel and a set of pixels (context vector),
respectively. In this paper, for image reconstruction, we use the
existing pixel samples from the observation.

2.1.1. Parametric image model
Linear autoregressive (AR) model is widely used in signal pro-

cessing. It is an effective structural constraint for solving various
image processing problems such as predictive coding and image
interpolation. A parametric image model can be derived by
assuming a parametric relationship between yi and xi: A linear
regression model of yi for xi can be written as:

yi ¼
Xm

j ¼ 1
αjxjþei ð2Þ

where αj, j¼1,2,…,m are the regression coefficients and eiARm is
an additive multivariate Gaussian zero mean noise term. This is
known as the AR model. Writing (2) in vector form, we have

y¼ Axþe ð3Þ
where A¼ xð1Þi ; xð2Þi ;…; xðnÞi

h i
;AARm�n is the design matrix, and x¼

α1;α2;…;αn½ �T ; xARn is the parameter vector. The parameter
vector can be estimated by the l 2minimization problem (mini-
mization of error vector)

x̂ ¼ argmin
xARn y�Ax 2

2

���� ð4Þ

The AR models are solved by classical least square (LS) method.
With the normality assumption of the noise term ei, the least
square estimation is also the maximum likelihood estimation of
the model parameters. The LS problem in (4) is equivalent to
solving an incompatible linear system

Ax¼ Y ð5Þ
where YT ¼ y1; y2;…; yn

� �
and XT ¼ x1; x2;…; xn½ �, which has closed

form solution as

x̂LS ¼ ðAATÞ�1ATY ð6Þ
for the over-determined system (n4m).
Numerical stability is a major issue with the LS solution of the

AR model. The problem is related to the rank condition of the
design matrix. The probability of numerical rank deficiency is
rather high due to discrete nature and structures of the digital
images in case of natural images. Without proper care, numerical
rank deficiency can adversely affect the parameter estimation of
the AR model. In order to overcome this, rank revealing QR fac-
torization is used to select an optimal subset from the design
matrix. A truncated solution to the linear system can be calculated
by removing the ill conditioned part of the right orthogonal matrix
of the rank revealing QR decomposition [15].

2.1.2. Non-parametric image model
KR is a widely known non-parametric technique which is used

for point estimation of probability functions, where the estimated
distributions are smooth. The conditional expectation in (1) can be
expressed as

y¼ E Y jX ¼ xið Þ �
Pn

j ¼ 1 Khð‖xi�xjkÞyjPn
j ¼ 1 Kh xi�xjkÞ

��� ð7Þ

where the kernels Ko xð Þ ¼ 1
oK

x
o

� �
can be chosen from functions that

are non-negative, sum to 1 and symmetric around 0.
The non-parametric conditional expectation estimator in (7) is

known as the Nataraya–Watson (NW) estimator, which is the
weighted average of the observations y1; y2;…; ynwith the
weight in inverse proportion to the distances between xj, 1 r j r
n and xi.
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