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a b s t r a c t

In multi-task learning, using task grouping structure has been shown to be effective in preventing
inappropriate knowledge transfer among unrelated tasks. However, the group structure often has to be
predetermined using prior knowledge or heuristics, which has no theoretical guarantee and could lead to
unsatisfactory learning performance. In this paper, we present a flexible multi-task learning framework to
identify latent grouping structures under agnostic settings, where the prior of the latent subspace is
unknown to the learner. In particular, we relax the latent subspace to be full rank, while imposing
sparsity and orthogonality on the representation coefficients of target models. As a result, the target
models still lie on a low dimensional subspace spanned by the selected basis tasks, and the structure of
the latent task subspace is fully determined by the data. The final learning process is formulated as a joint
optimization procedure over both the latent space and the target models. Besides providing proofs of
theoretical guarantee on learning performance, we also conduct empirical evaluations on both synthetic
and real data. Experimental results and comparisons with competing approaches corroborate the
effectiveness of the proposed method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Multi-task learning (MTL) aims to train prediction models for a
series of tasks jointly and simultaneously. Through exploiting the
commonality among multiple tasks, MTL has been shown to be
more effective than independently training each single task. In an
ideal scenario where all the tasks are related, the identified com-
monality can normally help improve the generalization perfor-
mance significantly. However, in realistic applications, the hidden
structures among multiple learning tasks can be very complicated.
For instance, the learning tasks could consist of several disjoint or
partially overlapped task groups as well as some outlier tasks. In
the case that some unrelated tasks are mixed together, simply
sharing commonality among all the tasks will certainly decrease
the learning performance, and such a phenomenon is thus called
negative transfer [1].

One way to avoid the negative transfer is to organize related
tasks in clusters, namely task grouping [2], and knowledge transfer
is performed only within each group. Briefly speaking, there exist
two levels of task grouping. The first level groups the learning
tasks in an explicit manner, where one often assumes that the
prediction models of the tasks within the same group share

certain commonalities, such as similar structures, parameters, or
priors [3–7]. However, such an explicit task grouping strategy
tends to be over rigorous, as it often results in disjoint sharing of
commonality among all the tasks. On the contrary, the second
level, implicit task grouping, was proposed as a valuable option
since it can reveal the hidden relationships among the learning
tasks [8–12]. For example, Kang et al. [11] proposed a subspace
based regularization framework to identify disjoint task groups,
where the tasks within each group are assumed to lie in a low-
dimensional space. Realizing the limitation of the disjoint task
grouping, Kumar and Daumé III [12] further proposed a subspace
based task grouping strategy that allows tasks from different
groups to overlap by having common basis tasks, namely Grouping
and Overlap in MTL (GO-MTL). However, the determination of the
number of hidden basis tasks remains unsolved in principle, and
prior works often rely on heuristics or empirical validation, which
holds no theoretical guarantee.

Motivated by Kumar and Daumé III [12], in this paper we
propose a flexible MTL (FMTL) paradigm to identify the task
grouping and overlap without imposing any specific structure
assumptions, e.g., the number of latent basis tasks. Similar to [12],
we assume that the model parameters fwlgLl ¼ 1 of L learning tasks
reside in a latent subspace spanned by a set of unknown basis
tasksM¼m1;⋯;mk;⋯;mL, wheremkARd is the model parameter
for the k-th basis task and d is the feature dimension. More spe-
cifically, we use a latent factor model to factorize the target model
into the latent subspace and the corresponding representation as
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wl ¼Msl. Instead of predetermining the size of latent basis tasks
and constraining the subspace to be low rank [12], we use a full
rank subspace and introduce two regularization terms to the
corresponding representation matrix S¼ s1;⋯; sl;⋯; sL of the
learning tasks. The first regularization term enforces S to be row
sparse that encourages the related tasks to share a subset of basis
tasks. The second column-orthogonality regularization term sup-
plies as a complement of the row-sparsity term, which prohibits
unrelated tasks to share basis tasks. Finally, we formulate the
learning procedure as an optimization problem over two variables,
i.e., the latent basis tasks M and the target model fwlgLl ¼ 1. Since
the optimization over the latent tasks can be solved analytically,
the original problem can be reformed as a convex minimization
problem over the transformed target model that can be efficiently
solved using the accelerated proximal gradient method. We show
that our proposed FMTL method holds theoretical guarantee of the
performance bound. Extensive experiments are conducted to
validate the effectiveness of our method in both regression and
classification problems, and results demonstrate that our method
outperforms several recent MTL methods.

The remainder of the paper is organized as follows. Section 2
gives a brief review of related works. Section 3 introduces our new
formulation of FMTL with latent task grouping. In Section 4, we
elaborate the optimization strategy with detailed analysis. We
discuss theoretical performance bound in Section 3, and provide
empirical studies and comparisons with representative MTL
algorithms in Section 6. Finally, Section 7 concludes this paper.

2. Related work

Due to practical needs in many applications, significant efforts
have been paid to the design of MTL algorithms. Model common-
ality has been regarded as one of the key ingredients for joint
model training. Many works focused on exploiting structure
commonality of multiple learning tasks, such as low rank subspace
sharing [3,13] and feature set sharing [8,14–19]. In addition,
parameter commonality aims to identify the shared parameters
across different tasks. Depending on the form of the used models,
the shared parameters can be the hidden units in neural networks
[4], the priors in hierarchical Bayesian models [5,20–22], the
parameters in Gaussian process covariance [23], the feature
mapping matrices [24], graph induced structures [25,26] and even
the similarity metrics [7,6]. However, these methods solely con-
sidering model commonality may suffer from unsatisfactory
learning performance since they neglected the fact that some tasks
may be unrelated, which is often true in real applications.

To avoid the adverse effect incurred by unrelated tasks, one
effective solution is to organize the tasks into groups, namely task
grouping where the commonality is mainly shared within each
group. Thrun and O'Sullivan [2] proposed to mutually measure the
relatedness of tasks and select sharing information, which is
regarded as one of the pioneer works for task grouping. Jacob et al.
[9] developed a similar idea by imposing a cluster norm penalty
and formulating the learning procedure as a convex optimization
problem. Kang et al. [11] presented a disjoint task grouping
method, where they assumed that the commonality sharing only
occurs within each task group. By imposing a sparse inducing
penalty, Kumar and Daumé III [12] further proposed to group the
tasks in a low dimensional subspace using the latent factor model,
where the tasks from different groups can partially share a subset
of basis tasks. However, the number of latent basis tasks has to be
determined by empirical validation or heuristics. Realizing the
importance of inferring the “right” number of latent tasks, Passos
et al. [27] and Gupta et al. [28] employed nonparametric Bayesian
methods to infer the number of latent tasks. However, these

Bayesian inference based methods have no guarantee of con-
vergence rate and could suffer from a local optimum.

Finally, identifying outlier tasks has also been investigated in
some recent works, where one assumes that the major task groups
are peppered with some irrelevant outlier tasks. Hence, extracting
those outlier tasks can help further alleviate the impact from the
negative transfer. A decomposition scheme was utilized to parti-
tion the model into a group task component and an outlier task
component [29–32].

3. Formulation

Assuming that we are given L tasks associated with training
data fðX1; fy1Þ;⋯; ðXL; yLÞg, where XlARd�nl and ylARnl are the
input and output of nl training instances for the l-th task. For a
typical linear regression or classification problem, the prediction
function for the l-th task is usually expressed by
f ðX;wlÞ ¼ f ðX>wlÞ, where wl is the parameter vector of the target
model. We stack all the parameter vectors of the L tasks to obtain a
target parameter matrix W¼ ½w1;⋯;wL�ARd�L.

Following Kumar and Daumé III [12], we use a latent model to
factorize the target matrix into two matrices as:

W¼MS; ð1Þ
where each column of M represents a latent task, and each column
of S¼ s1;⋯; sL is the representation of each target model using the
latent tasks: wl ¼Msl. In the latent factor model proposed by [12],
the latent task subspace is set to be low rank, i.e., MARd�k with
kominðd; LÞ. Hence, the rank of W is less than or equal to k, which
reflects the hidden grouping structure of the tasks. However, as
mentioned earlier, the rank of M, i.e., the number of basis tasks has
to be predetermined empirically based on prior information or
heuristics, which has no theoretical guarantee.

As the objective is to obtain a low rank parameter matrix W to
reveal the grouping structure of the learning tasks, we enforce the
representation matrix S to exhibit the low rank structure, while
relaxing the latent subspace M to be a full rank matrix, i.e.,
MARd�d. In particular, we impose two structure regularization
terms of the representation matrix S. The first is a ℓ21-norm reg-
ularization term, which introduces row-sparsity on S matrix that
encourages related tasks to share a subset of basis tasks. The
second term is column-orthogonality that prevents unrelated tasks
from sharing common basis. Formally, we formulate our FMTL
objective as:

min
M;S

XL
l ¼ 1

Lðf ðX>MslÞ; ylÞþαJSJ2;1þβ‖S> S‖2F ;

subject to : M>M¼ Id�d: ð2Þ
The first component Lðf ðX>MslÞ is a preselected loss function on
the training set. For regression and classification problems, the
squared loss and logistic loss are typically used, respectively:

Lðf ðX>
l MslÞ; ylÞ ¼ ðX>

l Msl�ylÞ2

Lðf ðX>
l MslÞ; ylÞ ¼ log 1þexpð�ylX

>
l MslÞ

� �
:

The second and third components represent the two types of
structure regularization terms on the representation matrix of the
target model in the latent subspace, where the coefficients α and β
weigh the contribution from each term. The constraint M>M¼
Id�d is used to ensure that the latent basis tasks M are orthogonal
and form a subspace in Rd.

Note that the ℓ2;1 norm as a structural penalty forces S to be a
row sparse matrix, which is equivalent to selecting a subset of
basis tasks to represent the target model W. The column-
orthogonal regularization term is employed to penalize the
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