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a b s t r a c t

Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common
sources of variability (electronic, electrical, biological) and to develop online and adaptive systems fol-
lowing the evolution of the subject's brain waves. Studying electroencephalographic (EEG) signals from
their associated covariance matrices allows the construction of a representation which is invariant to
extrinsic perturbations. As covariance matrices should be estimated, this paper first presents a thorough
study of all estimators conducted on real EEG recording. Working in Euclidean space with covariance
matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian
geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices.
Nonetheless, existing classification algorithms in Riemannian spaces are designed for offline analysis. We
propose a novel algorithm for online and asynchronous processing of brain signals, borrowing principles
from semi-unsupervised approaches and following a dynamic stopping scheme to provide a prediction
as soon as possible. The assessment is conducted on real EEG recording: this is the first study on Steady-
State Visually Evoked Potential (SSVEP) experimentations to exploit online classification based on Rie-
mannian geometry. The proposed online algorithm is evaluated and compared with state-of-the-art
SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve both
the classification accuracy and the information transfer rate in the online and asynchronous setup.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Human–machine interactions without relying on muscular
capabilities is possible with Brain–Computer Interfaces (BCI) [1]
They are the focus of a large scientific interest [2–4], especially
those based on electroencephalography (EEG) [5]. From a large
literature based on the BCI competition datasets [6–8], one can
identify the two most challenging BCI problems: on the one hand,
the inter-individual variability plagues the models and leads to
BCI-inefficiency effect [9–11], on the other hand, the intra-
individual changes calls for the development of online algo-
rithms and adaptive systems following the evolution of the sub-
ject's brain waves [12–14]. To alleviate these variations, several
signal processing and machine learning techniques have been
proposed, such as filtering, regularization or clustering [15,16]
without the emergence of an obvious “best candidate”
methodology.

A common vision is shared by all the most successful approa-
ches to reduce signal variabilities: they are applied on covariance

matrices instead of working in the input signal space. Common
Spatial Pattern (CSP) [17–19], which is the most known pre-
processing technique in 2-class BCI, try to maximize the covar-
iance of one class while minimizing the covariance of the other.
Similarly, Principal Components Analysis (PCA) [6,7], also applied
for spatial filtering in BCI, is based on the estimation of covariance
matrices. Canonical Correlation Analysis (CCA) is another example
of a technique relying on covariance estimates successfully applied
on EEG for spatial filtering [15,20]. Covariance matrices are also
found in classifiers such as the Linear Discriminant Analysis (LDA),
which is largely used in BCI. In all cases, they are handled as ele-
ments of an Euclidean space. However, being Symmetric and
Positive-Definite (SPD), covariance matrices lie on a subset of the
Euclidean space, with reduced dimensionality and specific prop-
erties, the Riemannian manifold. Considering covariance matrices
in their original space would reduce the search area for an opti-
mization problem [21,22]. As Riemannian manifolds inherently
define a metric, the distance between SPD matrices takes into
account the space where they lie on; approximating it to an
Euclidean space introduces inaccuracies and results in ill-
conditioned matrices.
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Recently, studies have been done to consider covariance
matrices obtained frommultichannel brain signals in their original
space [23–25]. Covariance matrices are the input features of the
BCI system and the classifier algorithms rely on Riemannian metric
for partitioning the feature space. The authors propose building
specific covariance matrices in order to emphasize the spatial and
frequential information of the multichannel brain signals [25]. The
outcome of this approach is a simple processing tool chain, which
achieves state-of-the-art classification performances.

This paper introduces an online version of the minimum dis-
tance to Riemannian mean (MDRM) algorithm [23], with an
application to Steady-State Visually Evoked Potential (SSVEP) sig-
nals. In SSVEP, the subjects concentrate on stimuli blinking at fixed
frequencies. Depending on the focus of their attention, brain waves
will arise with the same phase and frequency as the stimulus
chosen by the subject. The signals are recorded in an application of
assistive robotics,1 with a shared control scheme relying on an
SSVEP-based BCI and a 3D touchless interface based on IR-sensors
to operate an arm exoskeleton [26]. The long term objective is to
equip a home environment with assistive technologies, including
BCI, as proposed in [27,28]. In this context, it is important to
design an online system, i.e. that adapt continuously to the user's
brain signals, and asynchronous, i.e. that could be activated “on
demand”.

Our online implementation2 is similar to the unsupervised or
semi-unsupervised learning scheme proposed in [29,30]; that has
the potential of shortening (or even removing) the calibration
phase. We apply a similar approach to the dynamic stopping cri-
terion used in [31] to increase the speed of the BCI system. This
approach allows to dynamically determine the trial length and
ensure robustness in classification results. Our MDRM approach
outperforms state-of-the-art algorithms in the offline setup.
Moreover, these state-of-the-art algorithms, that are based on
CCA, are inherently limited as they could not handle resting state.
They must rely on an external command to be turn on or off, and
are thus only suitable to lab environment.

When working with covariance matrices, a crucial point is to
correctly estimate the covariance when the number of samples is
small or heavily corrupted by noise. Several approaches have been
proposed to build the covariance matrices, relying on normal-
ization or regularization of the sample covariances. To assess the
quality of the covariance matrices obtained from EEG samples, a
comparative study of these estimators is conducted.

Hence, the contributions of this works are:

� a comprehensive review of the literature on Riemannian geo-
metry applied to EEG and time-series,

� a thorough analysis of the covariance estimators and their
impact on tools derived from information geometry,

� first online application of a Riemannian classification algorithm
on SSVEP-based BCI,

� introduction of a novel algorithm for online and asynchronous
BCI, including a resting state class, yielding better performance
than state-of-the-art SSVEP algorithms. No phase synchroniza-
tion is required for the SSVEP.

The paper is divided as follows: Section 2 reviews the state of
the art in SSVEP-based BCI and the applications of Riemannian
geometry in machine learning for BCI. Section 3 presents concepts
of Riemannian geometry relevant to this work and estimators of
covariance. In Section 4, the proposed classification algorithm for

online SSVEP is introduced and the experimental results are pre-
sented in Section 5 for offline and online setups as well as without
and with a resting state class.

2. State of the art

2.1. Steady-state visually evoked potential

Sensory evoked potentials often oppose Event Related Potential
(ERP) and Steady-State Response (SSR) [32]. This distinction ori-
ginates from the idea that the SSR may be generated by neural
oscillations elicited by the repeated stimulations [33] whereas the
ERP is the transient response to an event occurring at sufficiently
long time interval to allow the system to return to its initial state
[34]. We will focus on the visual SSR, called SSVEP and its appli-
cation to BCI.

The SSVEP-based BCI is often employed as a dependent BCI
[35], that is, some residual muscular capabilities are required to
move the eye toward the blinking stimulus as opposed to inde-
pendent BCI, such as Motor Imagery (MI), where the commu-
nication does not rely on any motor capability. It has been shown
that SSVEP could be used as an independent BCI [36,37] as the
brain oscillations are strongly related to the focus of attention.
Using covert attention, i.e. shifting the focus of attention without
moving the eyes, subjects can generate different SSVEP responses.

BCI have highly variable subject-specific performances. 20–30%
of the subjects cannot operate correctly brain interfaces. This
phenomenon is referred to as BCI illiteracy [9–11]. It affects SSVEP-
based BCI and it is correlated with age and gender, male subjects
being more afflicted than female ones [38]. Offline BCI, that is
approaches where the learning algorithms are trained on a large
dataset of subject's EEG recording, are also afflicted which indicate
that a source of variability at the subject level is not handled
correctly by the existing approaches. BCI illiteracy is also afflicting
online approaches, where the algorithms are adapted to the sub-
ject's EEG as the experiment goes by.

Visual stimulus plays a crucial role, affecting the BCI perfor-
mance, and should be designed carefully. An in-depth review of
the literature [39] shows that LED stimuli provide better results
than those obtained on computer screen. A cognitive study [40]
indicates that any stimulation between 2 and 50 Hz induces visible
oscillations in the visual cortex. Another study shows that a peak
in signal to noise ratio is visible at around 15 Hz [41]. Common
values employed in SSVEP studies are between 12 and 25 Hz, as
they induce oscillations with higher amplitudes [39]. One should
note that safety of the subject should be taken into account as
some frequency ranges of the stimulation train could trigger epi-
leptic seizure [42].

The phase of the stimulation signal can also be modulated,
enhancing the BCI performance by boosting the Information
Transfer Rate (ITR) [43,44]. An important constraint in that case is
that the experimental setup requires a synchronization between
the display and the recording system, to ensure the correct esti-
mation of the stimulus' phase. Better alternatives are available
when considering systems with such constraints: code-modulated
VEP (c-VEP) has yield the highest ITR in BCI [45,46]. In c-VEP, the
sole difference is that the stimulus flickering is based on pseu-
dorandom sequences instead of the fixed frequencies of SSVEP. All
these successful approaches in SSVEP and c-VEP rely on CCA. Given
two sets of signals, CCA aims at finding the projection space that
maximizes their cross-covariance while jointly minimizing their
covariance [20,15,44]. The common methodology is to find the
canonical space between the multichannel EEG trial on the one
hand and reference signals, usually sine and cosine of target fre-
quencies and harmonics, on the other hand.

1 This dataset is freely available from https://github.com/sylvchev/dataset-
ssvep-exoskeleton.

2 The open source code is available on https://github.com/emmanuelkalunga/
Online-SSVEP.
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