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a b s t r a c t

Kernel adaptive filters (KAF) are a class of powerful nonlinear filters developed in Reproducing Kernel
Hilbert Space (RKHS). The Gaussian kernel is usually the default kernel in KAF algorithms, but selecting
the proper kernel size (bandwidth) is still an open important issue especially for learning with small
sample sizes. In previous research, the kernel size was set manually or estimated in advance by Silver-
man's rule based on the sample distribution. This study aims to develop an online technique for opti-
mizing the kernel size of the kernel least mean square (KLMS) algorithm. A sequential optimization
strategy is proposed, and a new algorithm is developed, in which the filter weights and the kernel size
are both sequentially updated by stochastic gradient algorithms that minimize the mean square error
(MSE). Theoretical results on convergence are also presented. The excellent performance of the new
algorithm is confirmed by simulations on static function estimation, short term chaotic time series
prediction and real world Internet traffic prediction.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Kernel based methods are successfully used in machine learn-
ing and nonlinear signal processing due to their inherent advan-
tages of convex optimization and universality in the space of L2
functions. By mapping the input data into a feature space asso-
ciated with a Mercer kernel, many efficient nonlinear algorithms
can be developed, thanks to the kernel trick. Popular kernel
methods include support vector machine (SVM) [1,2], kernel reg-
ularization network [3], kernel principal component analysis
(KPCA) [4], and kernel Fisher discriminant analysis (KFDA) [5], etc.
These nonlinear algorithms show significant performance
improvement over their linear counterparts.

Online kernel learning [36–39,47–58] has also been extensively
studied in the machine learning and statistical signal processing
literature, and it provides efficient alternatives to approximate a
desired nonlinearity incrementally. As the training data are
sequentially presented to the learning system, online learning
requires, in general, much less memory and computational cost.
Recently, kernel based online algorithms for adaptive filtering have
been developed and have become an emerging area of research
[6]. Kernel adaptive filters (KAF) are derived in Reproducing Kernel
Hilbert Spaces (RKHS) [7,8], by using the linear structure and inner

product of this space to implement the well-established linear
adaptive filtering algorithms that correspond to nonlinear filters in
the original input space. Typical KAF algorithms include the kernel
least mean square (KLMS) [9,10], kernel affine projection algo-
rithms (KAPA) [11], kernel recursive least squares (KRLS) [12], and
extended kernel recursive least squares (EX-KRLS) [13], etc. With a
radially symmetric Gaussian kernel they create a growing radial-
basis function (RBF) network to learn the network topology and
adapt free parameters directly from the training data. Among
these KAF algorithms, the KLMS is the simplest, and fastest to
implement yet very effective.

There are two main open challenges in the KAF algorithms . The
first is their growing structure with each sample, which results in
increasing computational costs and memory requirements espe-
cially in continuous adaptation scenarios. In order to curb the
network growth and to obtain a compact representation, a variety
of sparsification techniques have been applied, where only the
important input data are accepted as new centers. The presently
available sparsification criteria include the novelty criterion [14],
approximate linear dependency (ALD) criterion [12] surprise cri-
terion [15], and so on. In a recent work [16], we have proposed a
novel method, the quantized kernel least mean square (QKLMS)
algorithm, to compress the input space and hence constrain the
network size which is shown to be very effective in yielding a
compact network with desirable accuracy.

Selecting a proper Mercer kernel is the second remaining
problem that should be addressed when implementing kernel
adaptive filtering algorithms, especially when the training data
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size is small. In this case, the kernel selection includes two parts:
first, the kernel type is chosen, and second, its parameters are
determined. Among various kernels, the Gaussian kernel is very
popular and is usually a default choice in kernel adaptive filtering
due to its universal approximating capability, desirable smooth-
ness and numeric stability. The normalized Gaussian kernel is

κ u;u0ð Þ ¼ exp �‖u�u0‖2=2σ2� � ð1Þ
where the free parameter σ (σ40) is called the kernel size (also
known as the kernel bandwidth or smoothing parameter). In fact,
the Gaussian kernel is strictly positive definite and as such pro-
duces a RKHS that is dense [8] and as such linear algorithms in this
RKHS are universal approximators of smooth L2 functions. In
principle this means that in the large sample size regime the
asymptotic properties of the mean square approximation are
independent of the kernel size σ [46]. This means that the kernel
size in KAF only affects the dynamics of learning, because in the
initial steps the sample size is always small, therefore both the
accuracy for batch learning and the convergence properties for
online learning are dependent upon the kernel size. This should be
contrasted with the effect of the kernel size in classification where
the kernel size controls both the accuracy and the generalization
of the optimal solution [1,2]. Up to now, there are many methods
for selecting a kernel size for the Gaussian kernel borrowed from
the areas of statistics, nonparametric regression and kernel density
estimation. The most popular methods for the selection of the
kernel size are: cross-validation (CV) [17–21] which can always be
used since the kernel size is a free parameter, penalizing functions
[18], plug-in methods [18,22], Silverman's rule [23] and other rules
of thumb [24]. The cross-validation, penalizing functions, and
plug-in methods are computationally intensive and are not sui-
table for online kernel learning. The Silverman's rule is widely
accepted in kernel density estimation although it is derived under
a Gaussian assumption and is usually not appropriate for multi-
modal distributions. Besides the fixed kernel size, some adaptive
or varying kernel size algorithms can also be found in the litera-
ture [25–28]. This topic is also closely related to the techniques of
multi-kernel learning or learning the kernel in the machine learning
literature [40–45]. There the goal is typically to learn a combina-
tion of kernels based on some optimization methods, but in KAF
this approach is normally avoided due to the computational
complexity [6].

All the above mentioned methods, however, are not suitable for
determining an optimal kernel size in online kernel adaptive fil-
tering, since they either are batch mode methods or originate from
a different problem, such as the kernel density estimation. Given
that in online learning the number of samples is large and not
specified a priori, the final solution will be practically independent
of the kernel size. The real issue is therefore how to speed up
convergence to the neighborhood of the optimal solution, which
will also provide smaller network sizes. In the present work, by
treating the kernel size as an extra parameter for the optimization,
a novel sequential optimization framework is proposed for the
KLMS algorithm. The new optimization paradigm allows for an
online adaptation algorithm. At each iteration cycle, the filter
weights and the kernel size are both sequentially updated to
minimize the mean square error (MSE). As the kernel size is
updated sequentially, the proposed algorithm is computationally
very simple. The new algorithm can also be incorporated in the
quantization method so as to yield a compact model.

The rest of the paper is organized as follows. In Section 2, we
briefly revisit the KLMS algorithm. In Section 3, we propose a
sequential optimization strategy for the kernel size in KLMS, and
then derive a simple stochastic gradient algorithm to adapt the
kernel size. In Section 4, we give some theoretical results on the
convergence. Specifically, we derive the energy conservation

relation in RKHS, and on this basis we derive a sufficient condition
for the mean square convergence, and arrive at a theoretical value
of the steady-state excess mean-square error (EMSE). In Section 5,
we present simulation examples on static function estimation,
short term chaotic time series prediction and real world Internet
traffic prediction to confirm the satisfactory performance of the
KLMS with adaptive kernel size. Finally, in Section 6, we present
the conclusion.

2. KLMS

Suppose the goal is to learn a continuous input–output map-
ping f : U-Y based on a sequence of input–output examples
(training data) uðiÞ; yðiÞ� �N

i ¼ 1, where U�ℝm is the input domain,
Y�ℝ is the desired output space. The hypothesis space for
learning is assumed to be a Reproducing Kernel Hilbert Space
(RKHS) ℋk associated with a Mercer kernel κ u;u0ð Þ, a continuous,
symmetric, and positive-definite function κ : U�U-ℝ [7]. To
find such a function f , one may solve the regularized least squares
regression in ℋk:

min
f Aℋk

XN
i ¼ 1

yðiÞ� f uðiÞð Þð Þ2þγ‖f‖2ℋk
ð2Þ

where ‖:‖ℋk denotes the norm in ℋk, γZ0 is the regularization
factor that controls the smoothness of the solution. As the inner
product in RKHS satisfies the reproducing property, namely,
f κðu; :Þ
�� �

ℋk
¼ f ðuÞ

D
, (2) can be rewritten as

min
f Aℋk

XN
i ¼ 1

�
yðiÞ�〈 f

��κðuðiÞ; :Þ〉ℋk

	2

þγ‖f ‖2ℋk
ð3Þ

By the representer theorem [8], the solution of (2) can be
expressed as a linear combination of kernels:

f ðuÞ ¼
XN
i ¼ 1

αiκ uðiÞ;uð Þ ð4Þ

The coefficient vector can be calculated as α¼ KþγI
� ��1y,

where y¼ yð1Þ;⋯; yðNÞ½ �T , and KAℝN�N is the Gram matrix with
elements Kij ¼ κ uðiÞ;uðjÞð Þ.

Solving the previous least squares problem usually requires
significant memory and computational burden due to the neces-
sity of calculating a large Gram matrix, whose dimension equals
the number of input patterns. The KAF algorithms, however, pro-
vide efficient alternatives that build the solution incrementally,
without explicitly computing the Gram matrix. Denote f i the
estimated mapping (hypothesis) at iteration i. The KLMS algorithm
can be expressed as [6]

f 0 ¼ 0
f i ¼ f i�1þηκ uðiÞ; :ð ÞeðiÞ

(
ð5Þ

where η denotes the step size, eðiÞ is the instantenous prediction
error at iteration i, eðiÞ ¼ yðiÞ� f i�1 uðiÞð Þ, i.e. the instantenous error
only depends upon the difference between the desired response at
the current time and the evaluation of the current sample (uðiÞ)
with the previous system model (f i�1). The learned mapping of
KLMS, at iteration N, will be

f NðuÞ ¼ η
XN
i ¼ 1

eðiÞκ uðiÞ;uð Þ ð6Þ

This is a very nice result because it states that the solution to
the unknown nonlinear mapping is done incrementally one step at
a time, with a growing RBF network, where the centers are the
samples and the fitting parameter is automatically determined as
the current error.
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