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The availability of multi-core processors has motivated an increasing interest in research lines about
parallelization of machine learning algorithms. Kernel methods such as Support Vector Machines (SVMs)
or Gaussian Processes (GPs), in spite of their efficacy solving problems of classification and regression,
have a very high computational cost and usually produce very large models. In this paper we present
parallel algorithmic implementations of Semiparametric SVM (Parallel Semiparametric SVM, PS-SVM)
and Gaussian Processes (Parallel full GP, P-GP and Parallel Semiparametric GP, PS-GP). We have imple-
mented the proposed methods using OpenMP and benchmarked them against other state of the art
methods, showing their good performance and advantages in both computation time and final

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Kernel methods are very popular in machine learning because
they produce highly competitive results in many practical tasks. They
transform the input space onto a high dimensional one where inner
products are computed using a kernel function. The most relevant
techniques are Support Vector Machines (SVMs) for classification
problems and Gaussian Processes (GPs) for regression.

Support Vector Machines [1] are one of the most successful kernel
techniques, which aim to obtain a maximum margin separating
hyper-plane. They are very popular because they automatically adjust
the machine size and also produce highly competitive results in
many real world problems. The resulting size of the classifier is often
very large, that represents a high computational cost. Many research
lines have emerged to solve this problem of complexity and scal-
ability. Some works [2-5] calculate a full SVM and reduce afterwards
the machine size by solving a preimage problem [6]. In [7,8], to avoid
the calculation of a full SVM, they propose an iterative growing
architecture. In [8], Sparse Greedy Matrix Approximation (SGMA) is
proposed to iteratively select candidates to grow a semiparametric
model. Peng et al. [9] introduce a criterion for identification of sup-
port vectors leading to a reduced support vector set. Other works
[10] are focused on improving the classification complexity using
decision trees.
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Gaussian processes [11] are also non-parametric methods
considered the “state-of-art” solving regression problems and
relying on probabilistic Bayesian models. Unfortunately, their
direct application is limited due to the high training time and
computational cost O(n®) in non-sparse solutions, where n is the
size of the training set. There are also some iterative greedy
schemes that obtain a reduced GP. Among those, [12,13] are based
on minimizing Kullback-Leibler divergences, [14] uses a MAP
criteria to select in every iteration the candidate to grow the
model and [15] selects in every iteration the element that max-
imizes the evidence to avoid overfitting problems.

Since run time is the main problem of kernel methods, paral-
lelization is one of the most important techniques to accelerate
them. Currently, the semiconductor industry is creating new
designs of processors that increase their performance with the
inclusion of more cores in a single chip. With the emergence of
multi-core processors and new programming interfaces such as
OpenMP [16] to develop parallel software, many research lines
about parallelization in kernel methods have been opened.

Early works on parallelization in SVMs propose to split the
training set, train different SVMs on every data chunk and com-
bine the results using a neural network [17] or to train a new SVM
using the obtained Support Vectors [18]. In [19], a parallel version
using a cascade of SVMs is used. Recently new methods have
appeared, such as PSVM [20], Parallel SMO [21,22] or Graphics
Processing Unit (GPU) Tailored Approach SVM [23]. After the
apparition of the Big Data technologies a MapReduced based SVM
is used in [24,25] to solve problems in a distributed environment.
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PSVM solves the Quadratic Programming problem using a
parallel implementation of the Interior Point Method (IPM) [26]
and Incomplete Cholesky Factorization. Parallel SMO uses a par-
allel version of SMO [27] that divides the quadratic problem into a
series of smaller subproblems, which can be solved analytically. An
implementation for GPUs that uses clustering techniques to han-
dle sparse data sets is presented in [23]. In GPs [28] uses domain
decomposition to solve 2-dimensional problems in parallel.

Due to the fact that the run time of the training procedure and
the complexity of the model are the main weaknesses of Kernel
methods, our proposal here consists in the development of new
schemas that can address these issues. To that end we are bene-
fiting from two different techniques:

Semiparametric models: That can solve the issue of the model
complexity, as presented in previous works [29], because the final
machines are written as a function of a set of representatives,
instead of support Vectors (as in SVMs) or all data (as in GPs).
These models have been shown to achieve similar performance as
the full machines but with a lower computational cost and
complexity.

Parallel computing: That can solve the issue of the scalability
and the excessive run time of the training procedure by simulta-
neously using multiple computer resources to solve the problem.

By using these techniques we have developed three different
models.

® PS-SVM : A parallel and semiparametric version of the SVM.
® P-GP: A parallel version of the GPs.
® PS-GP: A parallel and semiparametric version of the GPs.

This paper is organized as follows. In Section 2 we describe our
algorithms. Experimental results are provided in Section 3. Finally
we describe the conclusions in Section 4.

2. Algorithms

When developing parallel code, the two most important issues
to avoid if possible are:

® Non-parallelizable sections of code: Because they put the upper
bound of speedup in our model according to Amdahl's law [30].
The run time of our non-parallel code is absolutely despicable
comparing to the whole run time.

® Communication between threads: To avoid possible bottlenecks
we have selected OpenMP as the parallel framework because
when a subtask finishes its job another subtask can access the
results stored in the RAM memory.

2.1. Parallelization of basic operations

2.1.1. Products

In a shared memory environment, the parallelization of pro-
ducts of matrices can be done in an efficient way, as seen in [31] by
sharing the rows of the resulting matrix among the different cores.

This schema is easily implementable with any parallel pro-
gramming interface as OpenMP. In Fig. 1 X™P represents the half
top rows of X and XB°®°™ the half bottom rows, i.e., X™P = (AC),
xBottom — (BD).

2.1.2. Inversions

Traditional methods to invert matrices are sequential, so their
parallelization is impossible. To perform an inversion in parallel
we have divided the matrix into four submatrices (quadtree) and
used the block matrix pseudoinversion to divide the process into
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Fig. 1. Division of a matrix product into two subtasks.
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Fig. 2. Division of matrix inversion into two subtasks.

two subtasks (P1 and P2). Fig. 2 shows the parallelization of a
matrix inversion for two cores.

Each subtask is composed of two inversions and three pro-
ducts, the run time is slightly higher than half of the whole pro-
cess. This has been partially solved using LU inversion and back
substitution, because it is possible to implement an inversion and
a product A~'B with the same computational cost than just an
inversion A~ [32].

Each subtask is composed of products and inversions that can
be recursively divided again until all the cores in the system are
used. For example, in Fig. 3 the division when four cores are used
is shown.

As we increase the number of cores and tasks, the run time of
every subtask decreases. For this approach to be useful, the time
spent in communications between tasks should be much lower
than the runtime of every task, to avoid bottlenecks.

2.1.3. Greedy techniques

In kernel methods, greedy algorithms [5,14,15,33] are one of the
most common techniques to build a semiparametric model. These
algorithms are proposed for iterative growing architectures, they are
based on selecting a group of candidates {X1, ..., X;;} from the training
set, evaluate them using an objective function f(x;) and updating the
architecture using the element that has obtained the best result.

To parallelize these algorithms, the elements have been dis-
tributed among the available cores in the system, the schema is
represented in Fig. 4 and can be easily implemented using any
parallelization technique.
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