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a b s t r a c t

Epithelial (EP) and stromal (ST) are two types of tissues in histological images. Automated segmentation
or classification of EP and ST tissues is important when developing computerized system for analyzing
the tumor microenvironment. In this paper, a Deep Convolutional Neural Networks (DCNN) based feature
learning is presented to automatically segment or classify EP and ST regions from digitized tumor tissue
microarrays (TMAs). Current approaches are based on handcraft feature representation, such as color,
texture, and Local Binary Patterns (LBP) in classifying two regions. Compared to handcrafted feature
based approaches, which involve task dependent representation, DCNN is an end-to-end feature
extractor that may be directly learned from the raw pixel intensity value of EP and ST tissues in a data
driven fashion. These high-level features contribute to the construction of a supervised classifier for
discriminating the two types of tissues. In this work we compare DCNN based models with three
handcraft feature extraction based approaches on two different datasets which consist of 157 Hema-
toxylin and Eosin (H&E) stained images of breast cancer and 1376 immunohistological (IHC) stained
images of colorectal cancer, respectively. The DCNN based feature learning approach was shown to have a
F1 classification score of 85%, 89%, and 100%, accuracy (ACC) of 84%, 88%, and 100%, and Matthews
Correlation Coefficient (MCC) of 86%, 77%, and 100% on two H&E stained (NKI and VGH) and IHC stained
data, respectively. Our DNN based approach was shown to outperform three handcraft feature extraction
based approaches in terms of the classification of EP and ST regions.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Stromal (ST) tissue includes the fatty and fibrous connective
tissues surrounding the ducts and lobules, blood vessels, and
lymphatic vessels, which are supportive framework of an organ.
Epithelial (EP) tissue is the cellular tissue lining and found in the
ductal and lobular system of the breast milk ducts. About 80%
breast tumors originate in the breast EP cells. Although ST tissue is
typically considered as not being part of malignant tissue, the
changes in the stroma tend to drive tumor invasion and metastasis
[11]. Therefore, tumor-stroma ratio in histological tissues is being
recognized as an important prognostic value [12], since cancer
growth and progression is dependent on the microenvironment of
EP and ST tissues. Yuan et al. in [31] found that the spatial
arrangement of stromal cell in tumors is a prognostic factor in
breast cancer. Consequently a critical initial step in developing

automated computerized algorithms for risk assessment and
prognosis determination is to be able to distinguish stromal from
epithelial tissue compartments on digital pathology images. This is
however extremely challenging due to the high data density, the
complexity of the tissue structures, and the inconsistencies in
tissue preparation. Therefore, it is crucial to develop intelligent
algorithms for the segmentation of different tissue structures in an
accurate, fast, practical and robust manner [25,32–34].

2. Previous works

There has been substantial interest recently in developing
approaches for automated classification of stromal and epithelial
regions within H&E tissue images. In [19], local binary pattern
(LBP) and contrast measure based texture features were used for
discriminating epithelium and stroma from immunohistochem-
istry (IHC) stained tumor tissue microarrays (TMAs) of colorectal
cancer. Five perception-based features (coarseness, contrast,
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directionality, line-likeness and roughness), features related to
human perception, were presented in [6] to differentiate EP and ST
patches [19]. In [14], color based texture features extracted from
square image blocks for automated segmentation of stromal tissue
from IHC images of breast cancer. A binary graph cuts approach
where the graph weights were determined based on the color
histogram of two regions, was used for segmenting EP and ST
regions from odontogenic cysts images in [13]. In [17], a cell graph
feature describing the topological distribution of the tissue cell
nuclei was used for discriminating tumor and stromal areas on
immunofluorescence histological images. In [3], IHC stained TMA
cores were automatically stratified as tumor or non-tumor cores
based on a visual word dictionary learning approach. As LBP based
approaches can only deal with gray scale images, in [19], prior to
feature extraction, each color image is converted into gray scale
images by computing a weighted sum of R, G, and B components.
However since the conversion assumes that each pixel in the gray
scale image is a linear combination of three color components, an
assumption that is not always true, LBP features could be derived
off sub-optimal image representations.

The fixed-size window or pixel-grid is one of the traditional
ways to select patches from bigger images prior to feature
extraction. Recently, superpixel based approaches [23] are being
employed to group pixels into meaningful atomic regions based on
similarity. Two popular superpixel algorithms are Normalized Cut
(Ncut)-based [23,24] and Simple Linear Iterative Clustering (SLIC)-
based [1]. Ncut-based superpixel algorithm essentially employs
graph theory to explore the pixel-wise similarity among the pixels
being interrogated and their neighbourhood pixels. The SLIC-
based superpixel algorithm is based on clustering and employs
the similarity of each pixel's color and Euclidean distance. Ncut-
based superpixel algorithm is more accurate but is more compu-
tationally intensive. Compared to Ncut-based algorithm, the SLIC-
based approach is simple and faster, but is less accurate. Compared
to traditional pixel-grids, the atomic regions generated via a
superpixel algorithm represent a natural partitioning of visual
scenes. As different tissue structures are mutually present in his-
tologic images, superpixel based approaches are often employed
as a pre-processing step to mitigate the issue of possible over-
segmentation of the tissue images into atomic regions. The atomic
regions are then subsequently segmented into epithelial and
stromal regions. In [4], a superpixel based algorithm was used to
over-segment breast tissue Hematoxylin and Eosin (H & E) images
into small compartments. Subsequently the cell nuclei and cyto-
plasm within each smaller subcompartment were further classi-
fied into epithelial and stromal regions by a Support Vector
Machine (SVM) classifier. Similarly, a superpixel based SVM was
employed to separate EP from ST areas in tissue regions of oro-
pharyngeal squamous cell carcinoma in [2].

All the previously proposed methods were based off hand-
crafted features such as color and texture which aim to simulate
the visual perception of human pathologist in interpreting the
tissue samples [30]. Recently, however, there has been interested
“deep learning” (DL) strategies for classification and analysis of big
data. Histopathology, given the data complexity and density, is
ideally aligned with deep learning approaches that attempt to use
deep architectures to learn complex features from data. DL
approaches unlike handcrafted feature approaches represent end-
to-end feature learning approach which attempt to learn high-
level structural features from a large amount of training data to
best discriminate between the classes of interest. The DL approach
can thus serve as a good feature extractor for better data repre-
sentation [18]. In [9], a deep max-pooling convolutional neural
network was presented for detecting mitosis in breast histological
images. The approach comprised a deep neural network involving
a convolutional and a max-pooling layer which were employed to

learn the representation of high-level features. Then, a supervised
softmax classifier was trained to classify each pixel within a square
window as containing a mitotic nucleus or not. In [10], a con-
volutional neural networks (CNN) and autoencoder were com-
bined for histopathological image representation based learning.
Then a softmax classification approach was employed for distin-
guishing cancerous and non-cancerous tissue. The approach in
[10] used a one-layer autoencoder for high-level feature repre-
sentation. In [28,29], we presented a Stacked Sparse Autoencoder
(SSAE) framework for automated nuclear detection from high
resolution breast histopathological images. Handcrafted features
were combined with CNN features in [26] for mitosis detection in
breast cancer pathology. DCNN is a hierarchical neural network
which mimics the network structure of neural systems. It is a
multi-layer network of interconnected simple “neurons” by con-
necting links characterized by a weight.

Building on these approaches, in this work, we present a patch
based DCNN approach for distinguishing epithelial and stromal
compartments within H&E images of breast cancers [8]. Each
histologic image is first represented by thousands of cropped sub-
images. Two different approaches involving the use of superpixel
(SP) and a fixed-size square window is used to generate sub-
images from H&E and IHC stained images, respectively. Different
from color or intensity based features, such as LBP [19] and texture
[6], our approach employs architectural features of atomic regions
in the tumor and stroma for tissue classification. The DCNN based
feature learning is applied to two classifications of EP and ST
patches on (1) IHC stained histologic images of colorectal cancer
and (2) on H&E stained images of breast cancer. For simplicity,
throughout this paper, we use two different terms “Classification”
and “Segmentation” to represent the two different applications,
respectively. The classification of EP and ST patches of IHC stained
images is an easier task which aims to assign a single label to the
respective patch. Segmentation of EP and ST regions is more dif-
ficult since it aims to detect the regions of interest (ROIs) and then
assign a label to each corresponding ROI. For the classification task,
we employed a fixed-size SW to extract candidate sub-images
defined via a sliding window scheme. These are then fed to the
DCNN for training the network. The flowchart for the classification
framework with DCNN is shown in Fig. 2(g)–(k). As the separation
of the epithelial and stromal regions from H&E images is a more
difficult task, we firstly employ a superpixel based scheme to over-
segment the image into atomic regions. Then the atomic regions
are resized into fixed-size square images, prior to feeding them to
a DCNN for feature learning.

The rest of this paper is organized as follows. A detailed
description of DCNN is presented in Section 3. The experimental
setup and comparative strategies are presented in Section 4. The
experiment results and a discussion of the results are reported in
Section 5. Concluding remarks are presented in Section 6.

3. Methods

3.1. The deep convolutional neural networks (DCNN)

The DCNN approach employed in this paper comprises two
alternating convolutional layers (or C layers, see Fig. 1(b)), max-
pooling (or P layers, see Fig. 1(c)), two full connection layers, and a
final classification layer. The C and P layers produce a convolution
and a max-pooling feature map via successive convolution and
max-pooling operations, respectively. These feature maps then
enable the extraction and combination of a set of appropriate
image features from the training exemplars.
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