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a b s t r a c t

Recently, multi-view feature extraction has attracted great interest and Canonical Correlation Analysis
(CCA) is a powerful technique for finding the linear correlation between two view variable sets. However,
CCA does not consider the structure and cross view information in feature extraction, which is very
important for subsequence tasks. In this paper, a new approach called Canonical Sparse Cross-view
Correlation Analysis (CSCCA) is proposed to address this problem. We first construct similarity matrices
by performing sparse representation between within-class samples. Then local manifold information and
cross-view correlations are incorporated into CCA. Furthermore, a kernel version of CSCCA (KCSCCA) is
proposed to reveal the nonlinear correlation relationship between two sets of features. We compare
CSCCA and KCSCCA with existing multi-view feature extraction methods and perform experiments on
both artificial data set and real world databases including multiple features and face data sets. The
experimental results demonstrate the merits of our proposed method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Multi-view learning [1,2] which learns patterns or features
from instances with multiple representations has been one of the
hotspots in machine learning community. It has been shown that
learning from multiple representations of data often achieves
better performance than traditional single view learning methods.
Recently, multi-view learning techniques have been extended to
multi-view regression [3] and multi-view clustering [4].

Canonical correlation analysis (CCA) [5] is a learning method to
find linear relationship between two groups of multidimensional
variables. The goal of CCA is to seek two bases which would
maximize the correlation of data by projecting two-view data
obtained from various information sources, e.g. sound and image.
In the past decades, CCA and its variants have been successfully
applied to many fields such as image processing [6], pattern
recognition [7,8], medical image analysis [9,10] and data regres-
sion analysis [11].

Standard CCA is an unsupervised linear dimensionality reduc-
tion method. It cannot preserve local structure in canonical sub-
spaces and either cannot reveal nonlinear correlation relationship.
In order to extract features with discriminant information, variants
of CCA called discriminant CCA (DCCA) [12], random correlation
ensemble (RCE) [13] and discriminative extended CCA (DECCA)
[14] are proposed. For example, DCCA not only considers the

correlation between two corresponding views of a sample, but
also uses all the cross-view correlation between within-class
examples. Several works have also discussed the relationships
between CCA and LDA, especially when the data features are used
in one view and the class labels are used in the other view [15,16].
It is shown that CCA and LDA have some equivalent relations [17].
In order to deal with nonlinear circumstance, some nonlinear CCA
algorithms have been proposed in the literature [18]. Kernel
methods [19,20] are widely used to reveal nonlinear structure in
the original input space, and have been introduced into CCA (e.g.,
Kernel CCA (KCCA)) [21]. KCCA first maps the data into high
dimensional feature space by implicit nonlinear mappings, and
then traditional CCA is performed in the feature space in which the
nonlinear problem in the original space is converted into a linear
one. However, like many other kernel methods, one disadvantage
of KCCA is the choice of appropriate kernel and kernel parameters.
Neural networks based nonlinear CCA suffers from some intrinsic
limitations such as long-time training, slow convergence and local
minima [18].

In recent years, locality preserving methods such as locally
linear embedding (LLE) [22], Isomap [23] and locality preserving
projections (LPP) [24] have achieved a remarkable flourish in
single-view dimensionality reduction. These methods preserve the
neighborhood information so as to discover the low dimensional
manifold structure embedded in the original high dimensional
space. Inspired by the similar idea, Sun and Chen proposed a
locality preserving CCA (LPCCA) [25]. LPCCA incorporates the local
structure information into CCA and decomposes the global non-
linear problem into many local linear ones, consequently, in each
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small neighborhood field the problem can be treated as linear CCA
and the global problem can be solved by optimizing the combi-
nation or integration of these local sub-problems. It has been
shown that LPCCA performs better than CCA in discovering
intrinsic structure of data for some applications, e.g., data visua-
lization and pose estimation. Nevertheless, LPCCA only concerns
the correlation between sample pairs and the discrimination of
the extracted features which is important in subsequent classifi-
cation task, while LPCCA is dependent on the parameter k which is
manually chosen through experience.

Several supervised multi-view feature extraction methods have
been proposed in recent researches. For example, Diethe et al.
extended the convex formulation for Kernel Fisher Discriminant
Analysis to multiple views [26]. Chen et al. proposed Hierarchical
Multi-view Fisher Discriminant Analysis to improve the perfor-
mance in classification and dimensionality reduction of multi-
view task [27]. Sharma proposed a general multi-view feature
extraction approach called Generalized Multiview Analysis (GMA)
[28]. Although these works can do well in supervised learning
situations, but they do not consider the intrinsic structures of the
data, such as manifold structure. Local discrimination CCA (LDCCA)
[29] and discriminative locality preserving CCA (DLPCCA) [30] can
be seemed as extensions of CCAwhich use label and neighborhood
information. Specifically, LDCCA not only considers the correla-
tions between sample pairs but also the correlations between
samples and their local neighborhoods. DLPCCA based on LDCCA
can use label discriminative information to improve classification
performance and preserve the geometric structure of data to
enhance the smoothness of the extracted features. It worth noting
that LPCCA, LDCCA and DLPCCA directly use the standard Eucli-
dean distance to measure the similarity between data points
which may be affected by outliers for the deficiency of robustness
of Euclidean distance. In LPCCA, the locality means that the global
nonlinear problem is decomposed into local linear ones. So the
local structure information can be preserved in the canonical
subspace. In LDCCA, the locality means the local neighborhood
sample pairs are used to compute the correlations while DLPCCA
considers the local structure information in two views separately.

In this paper, we propose a novel learning method for multi-
view data called canonical sparse cross-view correlation analysis
(CSCCA). We first construct similarity matrices by performing ℓ1
norm sparse representation on within-class samples. Then local
manifold structure information and cross-view correlation are
incorporated into CCA. Here, we use sparse reconstruction because
ℓ1 norm is more robust to noises than Euclidean distance. The
proposed method not only preserves the local structure informa-
tion in two views separately, but also the structure information in
the cross view. It is worth noting that many works have investi-
gated sparse CCA [31,32]. In those papers, the projective vectors
obtained by CCA need to be sparse that means there are a lot of
zero values in it, while the sparse in our method means sparse
reconstruction. The sparse representation achieved by minimizing
a ℓ1 regularization related objective function chooses its neigh-
borhood automatically and does not have to encounter model
parameters. The sparse in our method is totally different from
those sparse CCA. The proposed method can be efficiently solved
via generalized eigenvalue decomposition. Although the solution
is similar to that of [33], they are derived from different motiva-
tion. Moreover, we extend CSCCA to kernel version (KCSCCA) to
find nonlinear correlation. Experimental results on both synthetic
and real world data sets including multiple features data set and
face databases validate the effectiveness of the proposed method.

The rest of the paper is organized as follows: In Section 2, CCA
is briefly reviewed, the proposed CSCCA and KCSCCA are then
introduced in detail. The experiments and results on various data

sets are given in Section 3. Finally, we conclude this paper
in Section 4.

2. Proposed method

2.1. Canonical correlation analysis

Given a set of pair-wise data fðxi; yiÞgni ¼ 1ARp � Rq, where
fxigni ¼ 1 and fyigni ¼ 1 are samples from different views. Define that
X ¼ ½x1;…; xn�ARp�n and Y ¼ ½y1;…; yn�ARq�n. We assume that
the data have been preprocessed with zero mean. CCA seeks to
find two basis or projection vectors wxARp and wyARq, such that
the canonical variables x¼wT

xxi and y¼wT
yyi would be maximally

correlated. The objective function of CCA can be formulated as

max
wx ;wy

wT
xCxywyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðwT
xCxxwxÞðwT

yCyywyÞ
q ð1Þ

where Cxx ¼
Pn

i ¼ 1 xix
T
i ¼ XXT and Cyy ¼

Pn
i ¼ 1 yiy

T
i ¼ YYT are

within-sets covariance matrices and Cxy ¼
Pn

i ¼ 1 xiy
T
i ¼ XYT is

between-sets covariance matrix. Since the two basis vectors are
scale independent, wx and wy can be obtained by solving the
following optimization problem with constraints:

max
wx ;wy

wT
xCxywy

s:t: wT
xCxxwx ¼ 1; wT

yCyywy ¼ 1 ð2Þ

The optimization problem of CCA can be solved by applying
Lagrangian equation to Eq. (2) and we can obtain the following
generalized eigenvalue decomposition problem:

Cxy

CT
xy

" #
wx

wy

" #
¼ λ

Cxx

Cyy

" #
wx

wy

" #
ð3Þ

2.2. Canonical sparse cross-view correlation analysis

In this section, in order to cope with the nonlinear problems and
improve the performance of CCA in subsequent classification task, we
propose a novel feature extraction method called canonical sparse
cross-view correlation analysis (CSCCA). In CSCCA, the local structure
information is incorporated and the cross correlations between two
views from within-class samples are used by sparse representation.

The optimization problem of CCA can be written in the
equivalent form [25] as:

max
wx ;wy

wT
x �

Xn
i ¼ 1

Xn
j ¼ 1

ðxi�xjÞðyi�yjÞT �wy

s:t: wT
x �

Xn
i ¼ 1

Xn
j ¼ 1

ðxi�xjÞðxi�xjÞT �wx ¼ 1

wT
y �

Xn
i ¼ 1

Xn
j ¼ 1

ðyi�yjÞðyi�yjÞT �wy ¼ 1 ð4Þ

We incorporate the local structure information and the within-
class cross correlations into Eq. (4). The objective function of
CSCCA can be formulated as follows:

max
wx ;wy

wT
x �

Xn
i ¼ 1

Xn
j ¼ 1

Sxijðxi�xjÞSyijðyi�yjÞT þ
Xn
i ¼ 1

Xn
j ¼ 1

ðSxijþSyijÞxiyTj

0
@

1
A �wy

s:t: wT
x �

Xn
i ¼ 1

Xn
j ¼ 1

Sxijðxi�xjÞSxijðxi�xjÞT �wx ¼ 1

wT
y �

Xn
i ¼ 1

Xn
j ¼ 1

Syijðyi�yjÞSyijðyi�yjÞT �wy ¼ 1 ð5Þ

C. Zu, D. Zhang / Neurocomputing 191 (2016) 263–272264



Download English Version:

https://daneshyari.com/en/article/405872

Download Persian Version:

https://daneshyari.com/article/405872

Daneshyari.com

https://daneshyari.com/en/article/405872
https://daneshyari.com/article/405872
https://daneshyari.com

