
Stabilization for linear uncertain systems with switched
time-varying delays

Xinwei Chen a, Sheng-Li Du b,n, Li-Dong Wang c, Li-Juan Liu b,d

a Key Laboratory of Integrated Automation of Process Industry, Ministry of Education, School of Information Science and Engineering, Northeastern
University, Shenyang 110004, PR China
b School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, PR China
c The 92261 Unit of PLA, Haikou 570203, PR China
d School of Software, Dalian Jiaotong University, Dalian 116021, PR China

a r t i c l e i n f o

Article history:
Received 6 September 2015
Received in revised form
16 November 2015
Accepted 14 January 2016
Communicated by Xudong Zhao
Available online 8 February 2016

Keywords:
Switched systems
Time-varying delays
Stabilization
Controller design

a b s t r a c t

This paper is concerned with the robust stabilization problem for a class of uncertain linear time-delay
systems with large delay periods. The aim of this paper is to design a state feedback controller such that
the closed-loop system is exponentially stable and preserves a desired performance in the presence of
large delays. In order to deal with the large delay periods, the original system is converted into a
switched delay system, in which the delays are time-varying. The delay-dependent condition is estab-
lished in terms of matrix inequalities. The desired controllers can be solved by the cone complementary
linearization method. An example is presented to illustrate the effectiveness of the proposed technique.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Time-delays are often encountered in many practical systems,
such as tandem mills, long transmission lines in pneumatic sys-
tems, networked control systems, biological systems and multi-
agent systems [1–4]. Time-delay is one of the main resources of
instability and poor performance of the system. In the last dec-
ades, much work has been done to the stability analysis and
control synthesis of time-delay systems (see, for example [5–7],
and references therein). The existing criteria can be classified into
two categories, namely, delay-independent criteria [5,8], and
delay-dependent criteria [9–11].

Switched systems are hybrid dynamical systems composed of a
group of subsystems and a rule that governs the switching among
them. In the last two decades, there have been increasing interests in
the switched systems, see, for example, [12–16]. The authors in [12,13]
studied the linear switched systems, while the authors investigated
the nonlinear systems in [13–15]. A switched time-delay system is a
switched system whose subsystems are time-delay systems. In the
research of switched time-delay system, an assumption that the delay
is within a certain upper bound is usually adopted in existing litera-
tures. Such an upper bound usually can ensure the stability of the

switched time-delay systems. The stability analysis and control
synthesis are all investigated under such an assumption. However, if
the delay exceeds the bound, the existing methods will fail to analyze
such time-delay systems. Therefore, it is of importance to study this
new case, because it usually occurs in the research of practical systems.
As far as we have known, only a few papers have studied such pro-
blems, such as [17–19]. As pointed out in [19], when the delays exceed
such an upper bound, the delays are called large delays.

On the other hand, the problem of robust stabilization of systems
with uncertainties has also received much attention in recent years.
Guaranteed cost control aims to design a feedback controller such that
the asymptotic stability and an adequate level of performance of the
closed-loop system are ensured for all admissible uncertainties. Since
it was first put forward by [20], many significant results have been
proposed based on it. The guaranteed cost control problem for a class
of linear time-delay systems was solved in [21], where the desired
memoryless state feedback controller was constructed by the linear
matrix inequality (LMI) approach. The authors in [22] studied the
guaranteed cost control problem for linear systemwith delays in both
state and control input. The guaranteed cost control problem for
uncertain discrete time system was investigated in [23]. The linear
quadratic guaranteed cost control problem for a class of impulsive
switched systems was studied in [24]. However, up to date, the
guaranteed cost control problem for time-delay systems with large
delay periods is still unconsidered yet, which motivates the investi-
gation of this paper.
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In this paper, the attention is focused on the guaranteed cost
control problem for a class of linear systems with large delay
periods and parameter uncertainties. The original system con-
taining large delay periods is converted into a switched time-delay
system consisting of two subsystems. One subsystem, which is
stable, is used to denote the small delay periods; the other one,
which may not be stable, is used to denote the large delay case.
The issue we address here is to design a feedback controller such
that the above switched time-delay system is robustly stable and a
satisfactory control performance is guaranteed for all admissible
uncertainties. Sufficient conditions for the solvability are provided
in terms of matrix inequalities. The desired feedback controllers
can be obtained by solving the matrix inequalities, which is
implemented by the cone complementary linearisation method
proposed in [20].

The reminder of this paper is organized as follows: In Section 2,
some preliminaries and necessary definitions are provided and the
investigated problems are formulated later. Two useful lemmas
and the main results are presented in Section 3. In Section 4, a
numerical example is given to show the effectiveness of the pro-
posed method. The conclusions are drawn in the last section.

Notation: Throughout the paper, we denote by N the non-
negative integer set f0;1;2;…g. Rn denotes the n-dimensional
Euclidean space. For real matrices X and Y, the notation XZY
(resp. X4Y) means that the matrix X�Y is positive semi-definite
(resp. positive definite). The superscript ‘T’ stands for vector or
matrix transpose. tr (M) denotes the trace of matrix M. δminðPÞ and
δmax ðPÞ are used to represent the minimum and maximum
eigenvalue of matrix P, respectively.

2. Preliminaries and model foundation

Consider a class of uncertain systems with time delays descri-
bed by

_xðtÞ ¼ ðAþΔAÞxðtÞþAdxðt�τðtÞÞþBuðtÞ;
xðtÞ ¼φðtÞ; tA ½�h1;0�; ð1Þ

where xðtÞARn and uðtÞARm denote the system state and control
input, respectively; A;Ad;B are constant matrices with appropriate
dimensions; φðtÞ is a continuous differentiable vector-valued
initial function defined on ½�h1;0�; 0rτðtÞrh1 denotes the
time-varying delay. ΔA is an unknown real-valued function
representing the time-varying uncertainties, which is assumed to
have the following form

ΔA¼DFðtÞE; ð2Þ
where D and E are known constant matrices, and F(t) is an
unknown matrix function satisfying

FT ðtÞFðtÞr I: ð3Þ

Lemma 1 (Petersen and Hollot [25]). Let D;H and F(t) be real
matrices of appropriate dimensions with F(t) satisfying FT ðtÞFðtÞr I.
Then, for any scalar ϵ40

DFðtÞHþHTFT ðtÞDT rϵDDT þϵ�1HTH:
Definition 1 (Sun et al. [19]). If for tA ½T1; T2Þ, it holds that
h1oτ2ðtÞrh2, then the time interval ½T1; T2Þ is called a large delay
period; and if for tA ½T3; T4Þ, it holds that 0rτ1ðtÞrh1, then the
time interval ½T3; T4Þ is called a small delay period.

It should be noted that the actuator/controller failure and data-
dropouts may lead to large delay periods. Under such a case, the
time-varying delay τðtÞ may exceed the upper bound h1 and
belongs to another interval, such as τðtÞAðh1;h2�. In this paper, we
let 0rτ1ðtÞrh1 and h1oτ2ðtÞrh2. Then, when large delays

occur, system (1) can be rewritten as

_xðtÞ ¼ ðAþΔAÞxðtÞþAdxðt�τ2ðtÞÞþBuðtÞ;
xðtÞ ¼φðtÞ; tA ½�h2;0�: ð4Þ
If the large delay phenomenon occurs occasionally, systems
(1) and (4) can be described by

_xðtÞ ¼ ðAþΔAÞxðtÞþAdxðt�τσðtÞðtÞÞþBuσðtÞðtÞ;
xðtÞ ¼φðtÞ; tA ½�h2;0�; ð5Þ
where σðtÞ : ½0; þ1Þ-f1;2g is a piecewise constant switching
signal to be designed. σðtÞ ¼ 1 (resp. σðtÞ ¼ 2) denotes that system
(5) is running in a small delay period (resp. large delay period). In
this paper, the following assumption is adopted.

Assumption 1. The derivative of the time-varying delay τσðtÞðtÞ
satisfies

_τσðtÞðtÞrτmo1: ð6Þ

Remark 1. In this paper, we consider the slow-varying delays, i.e.,
_τσðtÞðtÞo1. The slow-varying delays adopted in most existing lit-
eratures, such as, [26,13] usually guarantee that the time-delay
systems are stable. However, the slow-varying delays may make
the system unstable, thus further attention should be paid for such
a case. In fact, such an assumption can also be relaxed, one can
refer to Remark 5 for the relaxation.

Definition 2. System (5) is said to be exponentially stable under
switching signal σðtÞ if the solution of system (5) satisfies

JxðtÞJrκ‖xt0‖c1e
�βðt� t0Þ; 8 tZ0; ð7Þ

for κZ1 and β40, where ‖xðtÞ‖c1 ¼max
n
sup�h2 rθr0 xðtþθÞ

�� ��;
sup�h2 rθr0 _xðtþθÞ

�� ��o.
The linear state feedback control law is given as

uσðtÞ ¼ KσðtÞxðtÞ: ð8Þ
Thus, the resulting closed-loop system from system (5) and (8) is
obtained as

_xðtÞ ¼ AσðtÞxðtÞþAdxðt�τσðtÞðtÞÞ;
xðtÞ ¼φðtÞ; tA ½�h2;0�; ð9Þ
where

AσðtÞ ¼ AþΔAþBKσðtÞ: ð10Þ
The weighted cost function associated with system (5) is given

by

J ¼
Z þ1

0
e�λt xT ðtÞQxðtÞþuT

σðtÞRuσðtÞ
h i

dt; ð11Þ

where λ is a positive constant, Q and R are positive definite
weighted matrices given in advance.

Now, the guaranteed cost control problem for system (5) with
large delay periods can be stated as:

Definition 3. If there exist a control law un
σðtÞ for the two sub-

systems and a switching signal σðtÞ, and a scalar Jn such that for all
admissible uncertainties, the closed-loop system is asymptotically
stable and the value of cost function (11) satisfies Jr Jn, then system
(5) is said to satisfy weighted guaranteed cost control. In this case,
(8) is said to be a guaranteed cost state feedback control law.

In this paper, the main attention is to solve the guaranteed cost
control problem of system (9) in the presence of the large delay
periods. Hereinafter, some knowledge related to large delay period
will be presented. A time sequence 0¼ t0ot1ot2o⋯, which
denotes the switching instants of the switching signal σðtÞ is
adopted. Then we introduce another time sequence fp0;p1;…g,
which belongs to one of the subsequences of ft0; t1;…g, and

X. Chen et al. / Neurocomputing 191 (2016) 296–303 297



Download English Version:

https://daneshyari.com/en/article/405875

Download Persian Version:

https://daneshyari.com/article/405875

Daneshyari.com

https://daneshyari.com/en/article/405875
https://daneshyari.com/article/405875
https://daneshyari.com

