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a b s t r a c t

This paper is devoted to the finite-time stability analysis and control for switched stochastic delayed
systems (SSDSs). The issue of mean-square finite-time stability for nonlinear switched stochastic delayed
systems (NSSDSs) is considered. A stability criterion with average dwell time constraint is proposed to
ensure the mean-square value of state is not larger than a prescribed threshold during a given time
interval. This result can be extended to analysis and design for nonlinear/linear switched stochastic
delayed systems. Then, based on partial-mode-dependent/mode-dependent Lyapunov function
approaches, mean-square finite-time stability conditions for linear switched stochastic delayed systems
(LSSDSs) are developed. Subsequently, both partial-mode-dependent and mode-dependent state feed-
back controllers for LSSDSs are designed, respectively. Finally, an illustrative example is provided to
demonstrated the effectiveness of the method.

& 2016 Published by Elsevier B.V.

1. Introduction

Finite-time stability of dynamical systems is firstly introduced
in 1960s [1]. A system is said to be finite-time stable if its state
retains in a certain range [1] or converges to zero [2,3] within a
prescribed time interval tA ½0; T�. Compared with Lyapunov stabi-
lity which considers asymptotic feature of a system as t-1,
finite-time stability mainly focuses on qualitative transient prop-
erty in given certain finite time. In many practical applications, as
we know, the qualitative features in transient processes are
especially important. An asymptotic system with large over-
shooting is unacceptable. Thus, the theoretical and applied studies
on finite-time stability and control have received considerable
attention in the past decades. The problem of finite-time attitude
control for spacecraft has been considered in [4,5]. A finite-time
gain-scheduled controller for bioreactor systems with partially
known transition jump rates has been designed in [6]. Some suf-
ficient conditions on finite-time stabilization for impulsive sys-
tems have been proposed by [7,8]. Finite-time dynamic output
feedback control for discrete-time linear systems has been inves-
tigated in [9]. Finite-time and practical stability of linear systems
with delay have been discussed, based on Lyapunov stability

theory [10]. Jiang et al. have applied differential inclusions theory
and Lyapunov function approach to finite-time synchronization
control for memristor-based recurrent neural networks [11].

Recently, more and more attention has been paid to finite-time
analysis and design of switched systems, since switched systems
can be used to describe lots of real-world plants with switchings.
Different from asymptotic/exponential stability analysis and
design in [12–18], finite-time analysis, control and state observa-
tion problems for switched systems have been studied by [19,20].
Just as in [2,3], the states of all subsystems of [19,20] converge to
zero in finite time. Meanwhile, if some important variables of the
systems are required to be not larger than prescribed values,
finite-time stability as in [1] should be considered for switched
systems. On the basis of Lyapunov function method and linear
matrix inequality (LMI) technique, the issues of finite-time ana-
lysis and control for switched systems with state-dependent
switching have been addressed in [21,22]. More recently, apply-
ing Lyapunov-like functions, [23] has considered finite-time sta-
bility of nonlinear switched systems with finite-time unstable
subsystems. Based on average dwell time (ADT) approach, uniform
finite-time H1 control method for discrete-time nonlinear swit-
ched systems has been provided in [24]. Finite-time stability
analysis and control for continuous-time fractional order switched
systems have been investigated by employing the ADT technique
[25]. For uncertain switched neutral systems with both stable and
unstable subsystems, [26] has dealt with finite-time H1 control
with admissible ADT in terms of a binary mode-dependent Lya-
punov function. It can be seen from (13) and (14) of [26] that the
matrices Q ; Z; T are independent on the systems modes, thus the
Lyapunov function in [26] is only partial mode-dependent.
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In fact, many practical systems are perturbed by multiplicative
stochastic noises [27–29], and the effects of stochastic perturba-
tions should be taken into account when investigating finite-time
analysis and design [29,30]. Via stochastic Lyapunov approach,
finite-time stability conditions in probability, and in mean and
mean square have been established for Itô-type stochastic linear
systems [29,30]. Based on stochastic Lyapunov method and convex
optimization approach, mean-square finite-time stability and
synthesis for various Itô stochastic systems results have been
provided recently [31–33]. And, Ref. [34] has concerned with H1
control for stochastic linear switched systems under admissible
switching signal satisfying average dwell time restriction. How-
ever, to the best of our knowledge, the problems of finite-time
stability analysis and feedback control for switched stochastic
delayed systems (SSDSs) have not been fully considered, which
motivates this paper.

This paper is concerned with finite-time stability analysis and
feedback stabilization for switched stochastic delayed systems
(SSDSs) of Itô-type. First, a mean-square finite-time stability cri-
terion for nonlinear switched stochastic delayed systems (NSSDSs)
is obtained, with switching signal satisfying average dwell time
(ADT) condition. It is a general result and can be used to stability
analysis and design for nonlinear/linear SSDSs. By means of the
obtained finite-time stability condition for NSSDSs and partial-
mode-dependent Lyapunov method as in [26], finite-time mean-
square stability for linear switched stochastic delayed systems
(LSSDSs) is investigated. Then, a feedback stabilization controller is
designed to guarantee the finite-time stability of the resulting
closed-loop systems. Furthermore, to overcome the conservatism,
mode-dependent Lyapunov function is also used for finite-time
stability analysis and control of LSSDSs. Finally, an illustrative
example shows the usefulness of the method.

Notations: Throughout this paper, the notations are standard.
Rn is an n-dimensional Euclidean space; Rn�m represents the set of
all n�m real matrices; j � j denotes the Euclidean norm or the
induced 2-norm as appropriate; λminð�Þ and λmaxð�Þ are the minimal
and maximal eigenvalues of a symmetric matrix, respectively; trf�g
stands for the trace of a matrix; diagfA1;A2;…;Ang represents a
block diagonal matrix with diagonal matrix blocks A1;A2;…;An;
Ef�g is the expectation operator. Z

1
2 is the square root matrix of the

positive definite and symmetric matrix Z40. ðΩ;F ;PÞ is a com-
plete probability space, where Ω is the sample space, and F is a
σ-algebra of subsets of Ω called events, and P is the probability
measure on F . n denotes the symmetric term in a symmetric
matrix.

2. Problem formulation and preliminaries

We first consider the following nonlinear switched stochastic
delay system (NSSDS):

dxðtÞ ¼ f σðtÞðt; xðtÞ; xðt�hÞÞ dt
þgσðtÞðt; xðtÞ; xðt�hÞÞ dwðtÞ
xðϑÞ ¼ϕðϑÞ; 8ϑA ½�h;0� ð1Þ

where xðtÞARn is the state vector, h40 is the delay, ϕð�Þ is the
known initial condition that is assumed to be continuously dif-
ferentiable on ½�h;0�; w(t) is a r-dimensional Wiener process; σðtÞ
is a switching signal, a piecewise constant and right-continuous
function on t, defined on a finite set S¼ f1;2;…;Ng, where N41 is
the number of subsets. For a switching series 0ot1ot2o⋯, the
σðtkÞ-th subsystem is activated when tA ½tk; tkþ1Þ. In this paper, for
brevity, the switching instant is denoted as σðtÞ ¼ i. Subsequently,
the nonlinear functions f σðtÞðt; xðtÞ; xðt�hÞÞ, gσðtÞðt; xðtÞ; xðt�hÞÞ are
abbreviated as fi(t), gi(t) in the following.

We now present the finite-time stability definition of system
(1) as follows.

Definition 1. For given scalars c1; c2, T with c1oc2 and a
switching signal σðtÞ, if
sup

�hr sr0
EfjxðsÞj 2goc1 ) Efj xðtÞj 2goc2; tA ½0; T �

then system (1) is said to be mean-square finite-time stable with
respect to ðc1; c2; T ;σÞ.

Definition 2. Let NσðtÞðt0; tÞ denote the number of switches for a
given switching signal on the time interval ½t0; t�, if the following is
satisfied for a scalar N0Z0:

NσðtÞðt0; tÞrN0þ
t�t0
τa

then τa is called the average dwell time and N0 the chatter bound.

In the next section, we shall investigate mean-square finite-
time stability of system (1), then extend it to the following linear
switched stochastic delay system

dxðtÞ ¼ ½AixðtÞþCixðt�hÞþBiuðtÞ� dtþ½FixðtÞþGixðt�hÞ� dwðtÞ ð2Þ
where uðtÞARm is the control input, wðtÞ is a scalar Wiener pro-
cess. The initial condition is given by ϕð�Þ as in system (1). Ai;Ci,
Bi; Fi;Gi are known real matrices.

Meanwhile, in this paper, a state feedback controller

uðtÞ ¼ KixðtÞ ð3Þ
is adopted to stabilize system (2), where KiARn�m are gain
matrices to be designed.

To fulfill the above-mentioned analysis and design objectives,
the following lemmas are proposed.

Lemma 1 (Itô formula, Mao [27]). If ViðxÞ is a positive definite,
radially unbounded, twice continuously differentiable function, then
its stochastic differential along system (1) is

dViðxÞ ¼LViðxÞ dtþ
∂Vi

∂x
gi dwðtÞ

where the infinitesimal operator reads as

LViðxÞ ¼
∂Vi

∂t
þ∂Vi

∂x
f iþ

1
2
tr gTi

∂2Vi

∂x2
gi

� �
:

Lemma 2 (Gronwall inequality, Chen et al. [33]). For given a non-
negative function VðtÞ and some constants C, A, if

VðtÞrCþA
Z t

0
V ðsÞ ds; 0rtrT

then there is

VðtÞrCeAT ; 0rtrT :

3. Main results

This section will focus on mean-square finite-time stability for
nonlinear switched stochastic delay system (1). Then, based on the
obtained result, mean-square finite-time stability and control for
system (2) will be considered.

3.1. Finite-time stability of NSSDS

First, construct a radially unbounded and twice continuously
differentiable function Vi(x) ðiASÞ such that

λ1 jxj 2rViðxÞrλ2 jxj 2þhλ3 jxt j 2 ð4Þ
where λk40; k¼ 1;2;3, and jxt j9supϑA ½�h;0� jxðtþϑÞj .
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