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a b s t r a c t

On the basis of establishing a new integral inequality composed of a set of adjustable slack matrix
variables, this paper mainly focuses on further improved stability criteria for a class of generalized neural
networks (GNNs) with time-varying delay by delay-partitioning approach. A newly augmented Lyapu-
nov–Krasovskii functional (LKF) containing triple-integral terms is constructed by decomposing integral
interval. The new integral inequality together with Peng–Park's integral inequality and Free-Matrix-
based integral inequality (FMII) is adopted to effectively reduce the enlargement in bounding the deri-
vative of LKF. Therefore, less conservative results can be expected in terms of es and LMIs. Finally, two
numerical examples are included to show that the proposed method is less conservative than
existing ones.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, much effort has been made in the stability
analysis of generalized neural networks (GNNs) model, due to the
fact that the GNNs include static neural networks (SNNs) and local
field neural networks (LFNNs) as their special cases [1–4]. As
pointed out by [1], stability analysis of GNNs has provided a uni-
fied frame suitable for both SNNs and LFNNs. On the other hand,
during the implementation of artificial NNs, the finite switching
speed of amplifiers and the inherent communication time
between the neurons inevitably introduce time delay, which might
cause oscillation, divergence, and even instability. Therefore, the
stability analysis and synthesis of the delayed neural networks
(DNNs) have attracted a large number of researchers [2–23]. The
criteria developed can be classified into two major categories: the
delay-independent case [5–7] and the delay-dependent case
[2–4,14,15,20]. Since the time delay encountered in neural net-
works is usually not very big [2], delay-dependent criteria, which
include the information of time delay, are less conservative.

The main goal of delay-dependent stability analysis is to reduce
the conservatism of the derived condition and obtain the max-
imum admissible upper bounds (MAUBs) of time delay that
guarantees the stability of NNs. It is well-known that the reduction
of conservatism in delay-dependent stability criteria can be
achieved mainly from two aspects: construction of appropriate
LKFs and utilization of tighter bounding techniques to bound the
derivatives of LKFs. As far as construction of LKFs are concerned,
delay-slope-dependent LKF [21], discretized LKF [24], triple inte-
gral form LKF [25,26], delay-partitioning-dependent augmented
LKF [9,15,27–29] have been introduced to reduce the conserva-
tiveness of the derived results. On the other hand, Jensen
inequality [24], free-weighting matrices techniques [30], convex
combination technique [31], reciprocally convex combination
(RCC) technique [32], Peng–Park's integral inequality [37],
Wirtinger-based integral inequality [33] and Free-Matrix-based
integral inequality (FMII) [34] are more or less tighter bounding
techniques for estimating the derivatives of LKFs.

During the last decade, the stability analysis of GNNs with
time-varying delay with LMI based method has become a hot
research topic, see, e.g., [1–4] and references therein. In [1], delay-
independent/-dependent stability criteria have been established
by employing LKF approach for GNNs with interval time-varying
delays, and these stability criteria have provided a unified frame
suitable for both SNNs and LFNNs. Based on constructing LKF
including more information on activation functions and delay
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upper bounds, [2] has derived less conservative stability criteria
for GNNs with two time-varying-delay components, and most
commonly used techniques for treating the derivative of the LKF
have been reviewed. With a suitably augmented LKF and modified
Wirtinger-based integral inequality, sufficient conditions for
guaranteeing the asymptotic stability of the GNNs with time-
varying delay are derived in terms of LMIs in [3]. Most recently, by
constructing an augmented LKF and utilizing the FMII, which
encompasses the Wirtinger-based inequality and is more tighter
than exiting ones [34], to bound the derivative of the augmented
LKF, less conservative stability criteria for GNNs with time-varying
delay have been derived in [4]. However, when revisiting the
aforementioned works for stability analysis of delayed GNNs, it is
found that these works still leave plenty of room for improvement
because (i) the LKFs constructed in these papers are just the LKFs
without delay-partitioning augmented terms and (ii) over-
bounding techniques have been employed to bound the deriva-
tives of the LKFs, which are the origin of conservatism. Whereas, as
pointed out by [27], via delay-partitioning approach, less and less
conservative results can be expected as the fractioning becomes
thinner. Therefore, these criteria can be further improved by tak-
ing advantage of delay-partitioning-dependent augmented LKF
and establishing more tighter bounding technique to bound the
derivative of the augmented LKF.

Motivated by the above discussion, the aim of this paper is to
develop further less conservative stability criteria for GNNs with
time-varying delay via delay-partitioning approach. The main
contribution of this paper lies in the following aspects: firstly, a
new integral inequality composed of a set of adjustable slack
matrix variables is established to bound the crucial double integral
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to be taken into full consideration; thirdly, the novel integral
inequality together with FMII and Peng–Park's integral inequality
is adopted to effectively reduce the enlargement in bounding the
derivative of the augmented LKF as much as possible. Therefore,
less conservative results can be achieved in terms of es and LMIs;
finally, two numerical examples are included to show the effec-
tiveness and the benefits of the proposed method.

The rest of this paper is organized as follows. The main problem
is formulated in Section 2 and improved stability criteria for the
GNNs with time-varying delay are derived in Section 3. In Section
4, two numerical examples are provided; and a concluding remark
is given in Section 5.

Notations: Through this paper, Rn and Rn�m denote, respec-
tively, the n-dimensional Euclidean space and the set of all n�m
real matrices; the notation A4 ðZ ÞB means that A�B is positive
(semi-positive) definite; I (0) is the identity (zero) matrix with
appropriate dimension; AT denotes the transpose; J�J denotes
the Euclidean norm in Rn; “n” denotes the elements below
the main diagonal of a symmetric block matrix; Cð½�τ;0�;RnÞ is
the family of continuous functions ϕ from interval ½�τ;0� to Rn

with the norm JϕJτ ¼ sup�τrθr0 JϕðθÞJ; let xtðθÞ ¼ xðtþθÞ;
θA ½�τ;0�. In addition, because many abbreviations are used in
this paper, they are given in Table 1 for the convenience of the
reader.

2. Problem statement and preliminaries

Consider the following generalized NNs (GNNs) with time-
varying delay and its equilibrium point being shifted to origin [1]:

_xðtÞ ¼ �AxðtÞþW1f ðW0xðtÞÞþW2f ðW0xðt�τðtÞÞÞ; ð1Þ
where xð�Þ ¼ ½x1ð�Þ; x2ð�Þ;…; xnð�Þ�TARn is the neuron state vector; f
ðxð�ÞÞ ¼ ½f 1ðx1ð�ÞÞ; f 2ðx2ð�ÞÞ;…; f nðxnð�ÞÞ�TARn denotes the neuron
activation function; A¼ diagfa1; a2;…; ang is a diagonal matrix
with ai40; i¼ 1;2;…;n, and W0;W1;W2ARn�n are the connec-
tion weight matrices between neurons; τðtÞ is a time-varying delay
satisfying

0rτðtÞrτ; ð2Þ

_τðtÞrμ; ð3Þ
where τ and μ are constants.

Remark 1. It is worth noticing that the model of GNNs (1)
includes SNNs and LFNNs as its special cases [1]. In fact, (i) let W1

¼ I;W2 ¼ 0 and W0 ¼W , the GNNs model (1) reduces to the SNNs
model; (ii) let W1 ¼W ;W2 ¼ 0 and W0 ¼ I, the GNNs model (1)
reduces to the LFNNs model. On the other hand, it is generally
known that the well-known Hopfield NNs and the cellular NNs
can be modeled as an LFNNs model. Therefore, stability analysis
for both SNNs and LFNNs (including Hopfield NNs and cellular
NNs) models can be made in a unified frame based on the
GNNs model.

Assumption 1 (Liu et al. [35]). The neuron activation functions f i
ð�Þ ði¼ 1;2;…;nÞ are continuous and bounded, and satisfy

k�
i r f iðxÞ� f iðyÞ

x�y
rkþ

i ; 8x; yAR; xay; ð4Þ

where f ið0Þ ¼ 0, and k�
i ; kþ

i ði¼ 1;2;…;nÞ are known real constants.

Remark 2. Assumption 1 on the activation function has originally
proposed in [35], and such activation functions could be non-
monotonic and more general than the usual sigmoid functions,
since k�

i and kþ
i may be positive, zero or negative. Under

Assumption 1, one has [21],

(i) for GNNs (1) and any positive diagonal matrix T,

xTðtÞWT
0KTKW0xðtÞ� f TðW0xðtÞÞ Tf ðW0xðtÞÞZ0; ð5Þ

where K ¼ diagfk1; k2;…; kng, ki ¼maxfjk�
i j ; jkþ

i j g;
(ii) for any x; yAR,

½ðf iðxÞ� f iðyÞÞ�k�
i ðx�yÞ�½kþ

i ðx�yÞ�ðf iðxÞ� f iðyÞÞ�Z0; ð6Þ
and letting y ¼ 0 in (6), it gives that

½f iðxÞ�k�
i x�½kþ

i x� f iðxÞ�Z0; 8xAR: ð7Þ

Before proceeding, recall the following lemmas which will be
used throughout the proofs.

Table 1
Abbreviations and their definitions.

Abbreviation Definition

HeðAÞ The sum of matrices A and AT

GNNs Generalized neural networks
FMII Free-Matrix-based integral inequality
MAUBs Maximum admissible upper bounds
es Defined in (14)
½Pij�ðmþ1Þ�ðmþ1Þ Defined in Theorem 1
½X ij�m�m Defined in Theorem 1
½X 0

ij�ðm�1Þ�ðm�1Þ Defined in Theorem 1
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