
An efficient algorithm for distributed density-based outlier detection
on big data

Mei Bai n, Xite Wang, Junchang Xin, Guoren Wang
College of Information Science and Engineering, Northeastern University, Liaoning, Shenyang 110819, China

a r t i c l e i n f o

Article history:
Received 13 February 2015
Received in revised form
27 April 2015
Accepted 22 May 2015
Available online 3 December 2015

Keywords:
Density-based outlier
Local outlier factor
Distributed algorithm

a b s t r a c t

The outlier detection is a popular issue in the area of data management and multimedia analysis, and it
can be used in many applications such as detection of noisy images, credit card fraud detection, network
intrusion detection. The density-based outlier is an important definition of outlier, whose target is to
compute a Local Outlier Factor (LOF) for each tuple in a data set to represent the degree of this tuple to be
an outlier. It shows several significant advantages comparing with other existing definitions. This paper
focuses on the problem of distributed density-based outlier detection for large-scale data. First, we
propose a Gird-Based Partition algorithm (GBP) as a data preparation method. GBP first splits the data set
into several grids, and then allocates these grids to the datanodes in a distributed environment. Second,
we propose a Distributed LOF Computing method (DLC) for detecting density-based outliers in parallel,
which only needs a small amount of network communications. At last, the efficiency and effectiveness of
the proposed approaches are verified through a series of simulation experiments.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The outlier detection plays an important role in the area of data
management and multimedia analysis, such as detection of noisy
images and credit card fraud detection. According to Hawkins [1],
“An outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a
different mechanism”. Thus far, there have been a large amount of
studies aiming at outlier detection, and various kinds of definitions
have been proposed, e.g., DB-outlier [2], top-n outlier [3] and
density-based outlier [4].

There exist lots of excellent algorithms for the outlier detection.
However, most of them only focus on centralized environments.
With the increasing amount of data, the processing efficiency of
these algorithms becomes limited and cannot meet users'
requirements. For instance, in the area of electronic commerce, we
consider the users' trade information as a data set, and the
abnormal trade records as outliers. Then the techniques of the
outlier detection can help us to find the theft of user accounts and
avoid the property damage. For many online shopping websites
(e.g., eBay and Amazon), huge amount of trade information is
generated every day. It takes hours even days if we use traditional
centralized algorithms to compute outliers. The time-effectiveness
cannot be guaranteed. In this case, economic losses cannot be

avoided. Therefore, it is quite necessary to design a parallel algo-
rithm that can use multiple machines to accelerate the outlier
computing.

This paper focuses on the problem of the outlier detection in
distributed environments, and we follow the definition of density-
based outlier [4]. Specifically, in a data set, for each tuple p, we
calculate its local outlier factor (LOF) that represents the degree of
p to be an outlier. LOF can reflect the isolation situation of p with
respect to (w.r.t.) its surrounding neighbors. We will give the for-
malized description in Section 3. Comparing with other definitions
of outliers, the density-based outlier has two advantages. (a) In
other existing approaches [2,3], the outlier detection is considered
as a binary problem (either an object in the data set is an outlier or
not). Instead, for the density-based outlier, they tend to assign
each object a degree of being an outlier, and they show it is more
meaningful in many complex scenarios. (b) They point out that in
many real-world data sets, whether a tuple t can be an outlier or
not depends on its surrounding neighborhood (only the tuples
which are closed to p). In this situation, LOF achieves better
expressiveness than other existing approaches.

There exists only one study [5] focusing on the same problem
with our paper. In [5], they adopt a master–slave architecture for
distributed computing. Each slave node calculates its neighbor-
hood set (it is the matrix that contains all the local tuples and their
respective neighborhood) and sends it to the master node. The
master node collects all the partial neighborhood sets and calcu-
lates LOFs of all the tuples. Clearly, this approach is not suitable for
distributed outlier detection on large-scale data, because a large

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.05.135
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: baimei861221@163.com (M. Bai).

Neurocomputing 181 (2016) 19–28

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.05.135
http://dx.doi.org/10.1016/j.neucom.2015.05.135
http://dx.doi.org/10.1016/j.neucom.2015.05.135
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.05.135&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.05.135&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.05.135&domain=pdf
mailto:baimei861221@163.com
http://dx.doi.org/10.1016/j.neucom.2015.05.135


number of tuples are aggregated to the master node, and lots of
calculations are needed to obtain the result. The master node
becomes the bottleneck when the data scale is large.

In this paper, to detect density-based outliers in distributed
environments efficiently, we propose several practical techniques,
which are summarized as follows:

1. We propose the Gird-Based Partition algorithm (GBP) for data
preprocessing. The algorithm first splits the whole data set into
several grids, and then allocates these grids to the datanodes in
a distributed environment. Using GBP, we can balance the
workload on each datanode and reduce the network overhead
while computing outliers.

2. We propose the Distributed LOF Computing method (DLC) for
detecting density-based outliers in parallel, which includes two
portions. First, based on the characters of LOF, we classify the
tuples in a grid into two categories: grid-local tuples and cross-
grid tuples. The grid-local tuples can be processed locally, and
the network communications are required only for the cross-
grid tuples. Then, we design a tailored method to minimize the
number of tuples that need to be transmitted across the
network.

3. We evaluate the performance of the proposed approaches
through a series of simulation experiments. The experimental
results show that the density-based outliers can be computed in
parallel efficiently using GBP and DLC. The performance of our
methods can meet the requirements of practical applications.

The rest of this paper is organized as follows. In Section 2, we
briefly review the related work. Section 3 states the problem of
density-based outlier detection in a distributed environment. Section
4 describes the details of GBP and DLC. Section 5 presents the
experimental results. Finally, we conclude this paper in Section 6.

2. Related work

We summarize the existing definitions of outliers and related
computing methods in Section 2.1. Then the previous approaches
of distributed outlier computing are described in Section 2.2.

2.1. Definitions of outliers

The concept of outlier was presented by Hawkins [1] in 1980. In
the recent decades, it has attracted the attention of many scholars,
and several formal definitions of outliers were proposed.

Several earlier studies [1,6,7] focus on statistic-based approa-
ches to detect outliers, where the tuples are modeled as a dis-
tribution and outliers are the tuples who show significant devia-
tions from the assumed distribution. However, for high dimension
data the statistic-based techniques are unable to build an appro-
priate model, which leads to performance degradation. Some non-
statistical (model-free) approaches are proposed and they do not
rely on the assumed data distribution. Knox and Ng [2] proposed
the distance-based (DB) outlier. Given two parameters k, r, the
neighborhood of a tuple p are the tuples whose distances to p are
smaller than or equal to r, and p is determined to be a DB outlier if
the number of its neighborhood is smaller than a given threshold
k. They also presented a nested-loop (NL) method to compute DB
outliers. Ramaswamy et al. [3] pointed out that Edwin's method
lacks the ranking information for outliers. Thus they proposed a
new definition, called Dk

n outlier, and proposed some efficient
algorithms to compute outliers using clustering techniques.

Another model-free approach is the density-based outlier [4]
that is adopted in our paper. Instead of directly determining
whether a tuple is an outlier or not, a local outlier factor (LOF) that

represents the degree of this tuple to be an outlier is assigned to
each tuple. The LOF of a tuple p is computed by analyzing its local
neighborhood. Comparing with other definitions, the density-
based outlier shows several significant advantages that have
been illustrated in Section 1.

Some studies aim at improving the computational efficiency for
the outlier detection. Bay and Schwabacher [8] proposed a nested
loop algorithm using randomization and a simple pruning rule,
and they showed that the algorithm has near linear time perfor-
mance on many large real data sets. Angiulli and Fassetti [9] pro-
posed DOLPHIN. Through maintaining a small portion of data in
the main memory, the entire data are required to be scanned twice
to calculate outliers. Furthermore, numbers of indexing techniques
(e.g., R-tree [10]) are employed to accelerate the computing speed.
Recently, there also emerge some outlier detection algorithms for
special purposes, such as uncertain data [11], streaming data [12],
and high dimensional data [13].

2.2. Outlier detection in distributed environments

Faced with the large-scale data, it takes a long time for outlier
detection if we still use the centralized algorithms, and the effi-
ciency is not satisfactory in most cases. Therefore, some
researchers start to utilize multiple machines to speed up the
calculation, and several methods [14–16] for distributed outlier
detection were proposed.

Otey et al. [17] proposed an outlier definition for the data with
mixed attributes, and designed a distributed method to detect
outliers. They considered the data sets which contain a mixture of
categorical and continuous attributes. The computation process
includes two steps. In the first step, they designed the anomaly
score function and computed the locally anomaly scores for all the
tuples. In the second step, a global schema is used to recalculate
the anomaly scores of tuples whose locally scores are larger than
the threshold. Finally, the outliers were chosen according to their
anomaly scores.

Angiulli et al. [18] proposed a method for top-n outlier detec-
tion in distributed environments. In the first iteration, each salve
node randomly selects n tuples and transfers them to the master
node. In the master node, the neighborhoods of these tuples are
calculated and the top-n tuples are chosen to filter out the local
tuples in the salve nodes. In the second iteration, another n tuples
in each salve node are randomly chosen and transferred to the
master node. The master node recalculates the top-n tuples and
uses them to prune local tuples. The process is repeated until all
the local tuples are pruned. This method is complex and needed
multiple iterations. Furthermore, most of the computations occur
on the master node which would be a bottleneck for large-
scale data.

Lozano and Acufia [5] proposed a distributed algorithm to
compute density-based outliers, which targets at the same issue in
our paper. The proposed algorithm is a parallel version of Breun-
ing's method [4]. However, as we mentioned in Section 1, they
adopt a master–slave architecture. In the slave node, the local
neighborhood of each tuple is calculated locally. Then all the
tuples and their neighborhood are transferred to the master node.
The final result is calculated in the master node. Since all the
tuples are transferred to the master node, the workload on the
master node is quite heavy. Thus, this approach cannot achieve
good performance when the data scale is large.

Outlier detection has some applications in the graph-based
data management. Specifically, many graph-based models are
used as geometric image descriptors [20] to enhance image cate-
gorization. Besides, these methods can be used as image high-
order potential descriptors of superpixels [21–23]. Further, graph-
based descriptors can be used as a general image aesthetic

M. Bai et al. / Neurocomputing 181 (2016) 19–2820



Download English Version:

https://daneshyari.com/en/article/405906

Download Persian Version:

https://daneshyari.com/article/405906

Daneshyari.com

https://daneshyari.com/en/article/405906
https://daneshyari.com/article/405906
https://daneshyari.com

