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a b s t r a c t

The restricted Boltzmann machine (RBM) is an essential constituent of deep learning, but it is hard to
train by usingmaximum likelihood (ML) learning, whichminimizes the Kullback–Leibler (KL) divergence.
Instead, contrastive divergence (CD) learning has been developed as an approximation ofML learning and
widely used in practice. To clarify the performance of CD learning, in this paper, we analytically derive the
fixed points where ML and CDn learning rules converge in two types of RBMs: one with Gaussian visible
and Gaussian hidden units and the other with Gaussian visible and Bernoulli hidden units. In addition,
we analyze the stability of the fixed points. As a result, we find that the stable points of CDn learning rule
coincide with those of ML learning rule in a Gaussian–Gaussian RBM. We also reveal that larger principal
components of the input data are extracted at the stable points. Moreover, in a Gaussian–Bernoulli RBM,
we find that both ML and CDn learning can extract independent components at one of stable points. Our
analysis demonstrates that the same feature components as those extracted byML learning are extracted
simply by performing CD1 learning. Expanding this study should elucidate the specific solutions obtained
by CD learning in other types of RBMs or in deep networks.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The restrictedBoltzmannmachine (RBM) is a bipartite graphical
model widely used as an essential constituent of deep neural
networks. The visible andhiddenunits of theRBMare conditionally
independent of each other (Hinton, 2002; Smolensky, 1986).
Contrastive divergence (CD) learning, an approximate algorithm
of maximum likelihood (ML) learning, efficiently uses this
conditional independence (Hinton, 2002). If ML learning is used to
train an RBM, it requires many iterations of Gibbs sampling at each
update step and takes too much computational time. In contrast,
CD learning requires only a few iterations of Gibbs sampling,
iterated transitions between visible units and hidden units. CDn
learning uses n steps of Gibbs sampling. In particular, CD1 learning
is widely used and can complete the training in a short time. As
evidenced empirically, an RBM trained by CD1 learning achieves
solutions close enough to those of an RBM trained by ML learning
(Carreira-Perpinan & Hinton, 2005). Stacked RBMs pre-trained by
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CD1 learning have performed well in practical applications such
as visual image classification (Hinton & Salakhutdinov, 2006) and
acoustic modeling (Dahl, Mohamed, & Hinton, 2010).

CD learning performs well enough to achieve success in
practice, but there is little theoretical evidence that shows that
it performs well. The previous theoretical studies demonstrated
that the properties of CD learning are quite different from those
of ML learning. For instance, there are certain cases where CD
learning does not converge because its gradient does not obey
any objective function (Sutskever & Tieleman, 2010). In a simple
case of an RBM with continuous 1-hidden and 1-visible units,
Williams and Agakov (2002) gained theoretical insights into how
the gradients of CD learning are biased in comparisonwith those of
ML learning. In general, the gradient of CD learning is interpreted
as a truncated expansion of the log-likelihood gradient (Bengio
& Delalleau, 2009). Even if the learning procedure converges to
equilibrium solutions, these solutions do not necessarilymaximize
the likelihood function (Carreira-Perpinan & Hinton, 2005).

The previous studies left a question unanswered: what specific
solutions are commonly or differently found by ML and CD
learning? Although there are general conditions under which CD
learning gives the ML solutions (Akaho & Takabatake, 2008; Yuille,
2005), these conditions are loose, and CD solutions are hard to
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identify. For using CD learning in practice, it is important to
identify the specific solutions obtained by CD learning and clarify
what features are extracted from input data. A way to identify
the solutions obtained by a learning rule is dynamical analysis
of equilibrium and its stability (Amari, 1977). By obtaining fixed
points of the learning rule and checking their stability by using the
perturbation method, the dynamical analysis has revealed what
weightmatrix can be extracted as a stable fixed point. For instance,
it has clarified principal or minor components extracted in linear
neural networks (Baldi & Hornik, 1989; Chen & Amari, 2001;
Oja, 1989), principal components extracted by ML learning in the
probabilistic PCAmodel (Tipping&Bishop, 1999), and independent
components extracted by ICA algorithms (Amari, Chen, & Cichocki,
1997; Hyvärinen, Karhunen, & Oja, 2001). If dynamical analysis
can be carried out on CD learning, we can understand the features
extracted by CD learning.

In this paper, we used the dynamical analysis to identify the
fixed points of ML and CDn learning rules in two types of RBMs.
First, we derived an exact analytical form of the fixed points in
a Gaussian–Gaussian RBM whose visible and hidden units are
continuous real values (Hinton, 2010; Williams & Agakov, 2002).
The ML and CDn learning rules were explicitly formulated with
model parameters. The analytical form demonstrated that ML
learning extracts principal components whose eigenvalues are
larger than a certain value. In addition, we analyzed the stability
of the fixed points by using the perturbation method and revealed
that a set of the largest principal components is extracted at stable
fixed points. Next, we derived the analytical form for fixed points
of CDn learning rule and found that it coincides with that of ML
learning. In addition, their stability also coincides with that of
ML learning. We thus concluded that CDn learning maximizes the
likelihood function and extracts the same principal components
as ML learning. Moreover, we also apply the same dynamical
analysis to a Gaussian–Bernoulli RBM whose hidden units are
binary (Hinton & Salakhutdinov, 2006; Lee, Ekanadham, & Ng,
2008). Under certain conditions, we revealed that bothML and CDn
learning in the Gaussian–Bernoulli RBM have one common stable
fixed point,where theGaussian–Bernoulli RBMdecomposesmixed
input signals to independent source signals.

This paper is a complete version of our unpublished results
(Karakida, Okada, & Amari, Unpublished results). Unlike in the
previous results, we generalize the analyses for the stability of
the fixed points in Gaussian–Gaussian RBM to the case where
there is no constraint on the number of hidden units. In addition,
we demonstrate the previously omitted proofs of theories on the
stable fixed point in Gaussian–Bernoulli RBM. We also discuss
the relationship between our theoretical results and the previous
studies such as experiments on natural images (Lee et al., 2008;
Wang, Melchior, & Wiskott, 2014) and nonlinear PCA (Oja, 1997).
Moreover, in both RBMs, we added the learning rules with bias
parameters in the Appendix.

The results for CDn learning are independent of n. Because CD1
learning can extract the same features asML learning, CD1 learning
seems to be efficient to train RBMs. Expanding our analysis would
help to elucidate features that can be extracted in RBMs with
binary visible units or stacked RBMs.

2. Model

2.1. Gaussian–Gaussian RBM

The probability distribution of a Gaussian–Gaussian RBM is
defined as follows (Hinton, 2010; Williams & Agakov, 2002):

p(h, v) = exp
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where v and h are random variables representing the states of
the visible and hidden units, respectively. Both hidden hi and
visible vj take continuous values and obey Gaussian distributions
characterized by variances s2i (i = 1, . . . ,M) and σ 2

j (j =

1, . . . ,N). Let us denote an M × N weight matrix by W , biases
by ci and bj, and a normalization factor by ψ . The joint probability
p(h, v) yields the following conditional probability:

p(h|v) = N

h; SWΣ−1v + c, S2


, (2)

p(v|h) = N

v;ΣW T S−1h + b,Σ2 , (3)

where we define a multivariate normal distribution with mean µ
and variance Σ2 by N


v; µ,Σ2


. Let us denote the covariance

matrix of the hidden units by an M × M diagonal matrix S =

diag(s1, s2, . . . , sM), whose entries satisfy Sii = si and Sij = 0
(i ≠ j). In addition, we denote the covariance matrix of the visible
units by an N × N diagonal matrixΣ = diag(σ1, σ2, . . . , σN).

When training examples of v are given from the outside, we
need to estimate W , b, and c such that the marginal distribution
p(v) of (1) is as close as q(v), which is the distribution of v
generating training examples. The model variances Σ2 and S2 are
given and fixed. For mathematical simplicity, we set the mean of
input data to µ =


dvq(v)v = 0 and the bias parameters to

b = c = 0 in the following learning rules. We can formulate
a general case in the same way as explained in the Appendix. In
Section 3, we will also assume that the variances of the visible and
hidden units are homogeneous, i.e.,Σ = σ IN and S = sIM .

ML learning rule. The learning rule of the maximum likelihood
(ML) estimate ofW is derived by minimizing the Kullback–Leibler
(KL) divergence between the input distribution and the model
distribution (Hinton, 2002) and is given by:

τ
dW
dt

= S−1 
⟨hvT ⟩0 − ⟨hvT ⟩∞


Σ−1, (4)

where τ is a learning constant. The first term is defined by
⟨hvT ⟩0 =


dhdvp(h|v)q(v)hvT , where q(v) is the input data

distribution. In contrast, the second term is defined by ⟨hvT ⟩∞ =
dhdvp(h, v)hvT , which is the expectation with respect to the

model distribution p(h, v). In practical application of RBMs, the
first term of ML learning is calculated by a finite number of
training examples and the second term is calculated by samples
of the model distribution obtained by Gibbs sampling. In this
study, to analyze average behaviors of the learning rules, we
neglect fluctuations caused by the training examples and the Gibbs
sampler and try to analytically calculate each term by using its
definition. In Gaussian–Gaussian RBM, the ML learning rule (4)
becomes:

τ
dW
dt

= WΣ−1CΣ−1
− W (IN − W TW )−1. (5)

Let us denote the data covariance matrix by C =

dvq(v)vvT −

µµT , where IN is an N × N identity matrix.
CDn learning rule. In practical application of RBMs, CDn

learning replaces the second term of ML learning with ⟨hvT ⟩n,
which is calculated by using samples obtained after n times
iteration of alternating Gibbs sampling between the visible and
hidden layers (Hinton, 2002):

τ
dW
dt

= S−1 
⟨hvT ⟩0 − ⟨hvT ⟩n


Σ−1. (6)
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