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a b s t r a c t

This paper aims to characterize whether a multi-layer cellular neural network is of deep architecture;
namely, when can an n-layer cellular neural network be replaced by an m-layer cellular neural network
for m < n yet still preserve the same output phenomena? From a mathematical point of view, such
characterization involves investigating whether the topological structure of two (or multiple) layers is
conjugate. A decision procedure that addresses the necessary and sufficient condition for the topological
conjugacy between two layers in a network is revealed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper focuses on the following dynamical systems.

d
dt

x(n)i (t) = −x(n)i (t)+ z(n) +

k∈N

(a(n)k f (x(n)i+k(t))

+ b(n)k f (x(n−1)
i+k (t))),

...
d
dt

x(2)i (t) = −x(2)i (t)+ z(2) +

k∈N

(a(2)k f (x(2)i+k(t))

+ b(2)k f (x(1)i+k(t))),
d
dt

x(1)i (t) = −x(1)i (t)+ z(1) +

k∈N

a(1)k f (x(1)i+k(t)),

(1)

for some integer n ≥ 2, i ∈ N, and t ≥ 0. Herein x(ℓ)i (t) = 0 for
1 ≤ ℓ ≤ n and t ≥ 0 provided i ≤ 0. The so-called neighborhood
N is a finite subset of integers Z; the output function

f (x) =
1
2
(|x + 1| − |x − 1|) (2)
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is a piecewise linear map. A = [A(1), . . . , A(n)] and B =

[B(2), . . . , B(n)] are the feedback and controlling templates, respec-
tively, where A(j) = [a(j)k ]k∈N , B(l) = [b(l)k ]k∈N for 1 ≤ j ≤ n, 2 ≤

l ≤ n; z = [z(1), . . . , z(n)] is the threshold. The template T of (1)
consists of the feedback and controlling templates and the thresh-
old, namely, T = [A,B, z]. Note that (1) are standard cellular neu-
ral networks (CNNs) if we let n = 1; in this casewe call them single
layer CNNs. Themain reason one chooses (2) to be the output func-
tion for (1) is the application of the pattern recognition and image
processing (Chua & Yang, 1988a, 1988b).

(1) are calledmulti-layer cellular neural networks (MCNNs, Chua
& Shi, 1990) for n ≥ 2. For the last few decades, MCNNs have
received considerable attention due to the fact that they have
been successfully applied to many areas such as signal prop-
agation between neurons and image processing (Chua & Yang,
1988a; Crounse & Chua, 1995; Murugesh, 2010; Yang, Nishio, &
Ushida, 2001, 2002), pattern recognition (Chua & Roska, 2002;
Crounse, Roska, & Chua, 1993; Peng, Zhang, & Liao, 2009), CMOS
realization (Carmona, Jimenez-Garrido, Dominguez-Castro, Espejo,
& Rodriguez-Vazquez, 2002; Xavier-de Souza, Yalcin, Suykens, &
Vandewalle, 2004), VLSI implementation (Chua & Shi, 1991), and
self-organization phenomena (Arena, Baglio, Fortuna, & Manga-
naro, 1998). The sufficient conditions for the complete stability of
(1) for n ≥ 1 can be found in Li (2009), Paolo-Civalleri and Gilli
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(1999), Savaci and Vandewalle (1992), Török and Roska (2004),Wu
and Chua (1997), Xu, Pi, Cao, and Zhong (2007) and Zou andNossek
(1991).

Some kind of stationary solution for (1) is essential, namely,
the mosaic solution, due to the wide range of complete stability
in the parameter space and the application to image processing.
For single layer CNNs, a mosaic solution x is a stationary solution
of (1) which satisfies |xi| ≥ 1 while its corresponding pattern
y = (yi) = (f (xi)) is called a mosaic output pattern. Since the
output function (2) is a piecewise linear function with f (x) = 1
(resp. −1) if x ≥ 1 (resp. x ≤ −1), the output of a mosaic solution
x = (xi)i∈N is an element in Σ = {−1,+1}N, and that is why we
call it a pattern.

Given an n-layer CNN with n ≥ 2, a stationary solution x =

(x(1)i , . . . , x
(n)
i )i∈Z ∈ R∞×n of (1) is called mosaic if |x(k)i | > 1 for

1 ≤ k ≤ N, i ∈ Z. The output y = (y(1)i · · · y(n)i )i∈Z ∈ {−1, 1}∞×n

of a mosaic solution is called a pattern, where y(k)i = f (x(k)i ). The
solution space Y of (1) stores the mosaic patterns y, and the output
spaceY(n) of (1) is the collection of the output patterns inY, or,more
precisely,

Y(n) = {(y(n)i )i∈Z : (y(1)i · · · y(n)i )i∈Z ∈ Y}.

There are two important problems for a given MCNN: (i) How
can we characterize whether an MCNN has deep architecture?1
and (ii) How can we train a deep architecture MCNN? Those two
problems are closely related to AI design, since deep architecture
may be required for any such design. As a general reference,
readers are referred to Bengio (2009) for more details.

This work is intended as an attempt to answer problem (i) and
study the learning algorithm of (ii). First we try to formulate (i) and
(ii) mathematically. LetΣ be a shift space; that is,Σ is a subset of
AN for some finite set A. C(Σ,Σ) denotes the collection of maps
from Σ to Σ . A map τ ∈ C(Σ,Σ) is called a factor (resp. an
embedding) if it is onto (resp. one-to-one). τ is called a conjugacy
if it is both a factor and an embedding. Then the above problem is
formulated as follows.

Problem 1. Given an n-layer CNN (1) with n ≥ 2.

(1) Corresponding to a given Y(1), what kind of Y(n) can be shown?
To be precise, what is the symbolic spaceY(n) according toY(1)?

(2) Given Y(i) and Y(j) for 1 ≤ i ≠ j ≤ n, does there exist a
conjugacy τ between them?

Problem 1-(1) is closely related to the learning algorithm of
MCNNs since one can figure out which kind of output solutions of
(1) can be produced from a given input. It is also worth pointing
out that if τ in Problem 1-(2) exists and i < j, then one can merge
the ith layer to the jth layer to form one layer since conjugacy
ensures that the phenomena exhibited by these two layers are
dynamically the same. By continuing this process one would
obtain a new MCNN such that each layer completely performs a
different function between the other layers (thus each layer cannot
be removed). Thus, one can characterize the depth of such an
MCNN. In Ban, Chang, and Lin (2012), Ban and Chang provided a
necessary and sufficient condition for determining whether Y(i)
and Y(j) are conjugated for some 1 ≤ i < j ≤ n; in this
case, an n-layer CNN can be replaced by an (n − j + i)-layer
CNN. Their criterion only works for the case where the symbolic
transitionmatrices of Y(i) and Y(j) are both right-resolving (defined
later). Later on, Chang (2015) obtained a necessary and sufficient

1 Deep architectures are composed of multiple levels of nonlinear operations,
such as in neural networkswithmany hidden layers or in complicated propositional
formulae re-using many sub-formulae.

condition for determining whether a multi-layer neural network
can be reduced to one with fewer layers without the assumption
in Ban et al. (2012); instead of right-resolving of the symbolic
transition matrix, the criterion proposed in Chang (2015) hinges
on the existence of the so-called factor-like matrix. This work
proposes an algorithm, which provides a necessary and sufficient
condition for determining the depth of an MCNN, for answering
Problem 1-(2); the main contribution of the proposed algorithm
is to demonstrate a workable criterion which can be realized by
programming, such that the result can be derived in seconds.

Meanwhile, recall that the well-known Hopfield neural net-
works (Hopfield, 1982, 1984) can be formulated asCiẋi = −

xi
Ri

+

N
j=1

ωijyj + θi,

yi = gi(λixi),

for i = 1, . . . ,N, (3)

where xi stands for the state of neuron iwith each activation func-
tion gi being sigmoid. It should be highlighted that if n = 1, then
the main difference between (1) and (3) is their output functions
and the weights between neurons. Hence the investigation of the
MCNNs in this paper can be extended to Hopfield neural networks
(HNNs) with somemodification. Roughly speaking, MCNNs are hy-
brids between conventional neural networks, such as HNNs, and
continuous automata; the behavior of the overall systems of both
MCNNs and HNNs is driven by the weights of the processing unit’s
linear interconnection. Themajor discriminator is that the connec-
tions between MCNN processors are local, while all the HNN pro-
cessors are fully interconnected. Beyond that, ourmethodology can
also be applied to determine whether two stable multi-layer neu-
ral networks are topologically conjugate, in other words, whether
or not two different neural networks, such as CNN and HNN, rec-
ognize the same images up to the change of color. The relatedwork
is in preparation.

As stated above, one of the applications of our algorithm is to
see whether two completely stable networks are likely to be con-
jugated, that is, to determine if two networks exhibit the same
dynamical behavior eventually. More precisely, the output of a
network converges to patternswhenever it is completely stable; in
this case, the output patterns are realized symbolically and can be
analyzed via our algorithm and theorem. To the best of our knowl-
edge, there is no such elucidation investigating multi-layer neu-
ral networks from this perspective. Furthermore, in Rakkiyappan,
Chandrasekar, Lakshmanan, and Park (2014), Rakkiyappan, Zhu,
and Chandrasekar (2014), the authors demonstrated the asymp-
totic stability of some types of stochastic neural networks with
time-dependent delays and Markovian jump parameters. A nat-
ural question is to ask under what conditions a stochastic neural
network with delays possesses similar behavior to a multi-layer
cellular neural network, up to conjugacy. It is also interesting to
elaborate the cost to simulate a stochastic neural networkwith de-
lays by a deterministic multi-layer network; more precisely, to an-
swer the question of how many layers we need, for instance, for
a multi-layer cellular neural network to exhibit the dynamical be-
havior of a stochastic Cohen–Grossberg neural network with de-
lays. The related work remains in preparation.

The rest of this paper is organized as follows. In Section 2,
we consider the simplest case, i.e., n = 2 and elucidate how to
produce the symbolic space of Y(2) according to a given Y(1). This
method can be easily extended to the general case where n > 2.
The so-called symbolic transition matrices S(i) of Y(i), for i = 1, 2,
are defined therein, which is helpful for the study of Problem-
(2). We prove that S(i) is the complete invariant for the existence
of conjugacy between Y(1) and Y(2) (Theorem 2.1). This gives the
affirmative answer for Problem-(2) of n = 2. Finally we extend
this result to the general case for arbitrary n ≥ 2 (Theorem 3.1) in
Section 3, and further discussion and our conclusion are addressed
in Section 4.
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