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a b s t r a c t

In this paper, the global exponential stability of complex-valued neural networks with both time-varying
delays and impulsive effects is discussed. By employing Lyapunov functional method and using matrix
inequality technique, several sufficient conditions in complex-valued linear matrix inequality form are
obtained to ensure the existence, uniqueness and global exponential stability of equilibrium point for
the considered neural networks. Moreover, the exponential convergence rate index is estimated, which
depends on the systemparameters. The proposed stability results are less conservative than some recently
known ones in the literatures, which is demonstrated via two examples with simulations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, stability analysis of various classes of
neural network models such as Hopfield neural networks,
Cohen–Grossberg neural networks, cellular neural networks,
and bidirectional associative memory neural networks has been
extensively investigated as stable neural networks have been
successfully applied to some practical engineering problems such
as signal processing, pattern classification, associative memory
design and control and optimization (Arik, 2004). However,
in electronic implementation of neural networks, due to the
communication between the neurons, some timedelay parameters
must be introduced into the equations that describe the neural
network model (Faydasicok & Arik, 2013). The analysis of the
time delays on the stability of neural networks is important as a
stable neural network without time delays can exhibit an unstable
behavior in the presence of time delays (Jian & Zhao, 2015). The
mathematical modeling of delayed neural networks depends on
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how the delay parameters are introduced into system equations
of neural networks (Marcus & Westervelt, 1989). Therefore, the
problem of stability analysis of neural networks with delays has
become interesting and received increasing attention, see Arik
(2004), Cao and Song (2006), Cao and Wan (2014), Chen, Lu, and
Chen (2005), Dharani, Rakkiyappan, and Cao (2015), Faydasicok
and Arik (2013), Jian and Zhao (2015), Kwon, Park, Lee, Park, and
Cha (2013), Marcus and Westervelt (1989), Park, Kwon, and Lee
(2008), Wen, Zeng, and Huang (2012), Zeng andWang (2006), Zhu
and Cao (2011) and the references herein.

On the other hand, an impulsive phenomenon exists universally
in a wide variety of evolutionary processes where the state is
changed abruptly at certain moments of time, involving such
fields as chemical technology, population dynamics, physics and
economics (Xu & Yang, 2005). It has also been shown that
an impulsive phenomenon exists likewise in neural networks
(Balasubramaniam & Vembarasan, 2011). For instance, during the
implementation of electronic networks, when a stimulus from the
body or the external environment is received by receptors, the
electrical impulses will be conveyed to the neural networks and
an impulsive phenomenonwhich is called impulsive perturbations
arises naturally (Rakkiyappan, Chandrasekar, Lakshmanan, Park, &
Jung, 2013). The impulsive perturbation of neural networks can
affect the dynamical behaviors of the neural networks, same as
time delays effect (Stamova, Stamov, & Li, 2014). Therefore, it is
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necessary to consider both impulsive effect and delay in the study
of stability of neural networks (Chen, Lu, & Zheng, 2015).

As an extension of real-valued neural networks, complex-
valued neural networks with complex-valued state, output,
connection weight, and activation function become strongly
desired because of their practical applications in physical systems
dealing with electromagnetic, light, ultrasonic, and quantum
waves (Hirose, 1992). In fact, complex-valued neural networks
(CVNNs) make it possible to solve some problems which cannot
be solved with their real-valued counterparts. For example, the
XOR problem and the detection of symmetry problem cannot
be solved with a single real-valued neuron, but they can be
solved with a single complex-valued neuron with the orthogonal
decision boundaries, which reveals the potent computational
power of complex-valued neurons (Jankowski, Lozowski, & Zurada,
1996). Besides, CVNNs have more different and more complicated
properties than the real-valued ones (Lee, 2001). Therefore it
is necessary to study the dynamic behaviors of CVNNs deeply
(Nishikawa, Iritani, Sakakibara, & Kuroe, 2005).

It is known that the main challenge is the choice of activation
function in study for stability of complex-valued neural networks
(Zhou & Song, 2013). Any regular analytic function cannot be
bounded unless it reduces to a constant. This is known as the
Liouville’s theorem. That is to say, activation functions in complex-
valued neural networks cannot be both bounded and analytic.

On the one hand, when activation functions can be expressed
by separating their real and imaginary parts, some stability criteria
were given for various CVNNs, for example, see Gong, Liang,
and Cao (2015a, 2015b), Hu and Wang (2012), Liu and Chen
(2016), Rakkiyappan, Velmurugan, and Cao (2015), Rakkiyappan,
Velmurugan, and Li (2015), Velmurugan, Rakkiyappan, and Cao
(2015), Xu, Zhang, and Shi (2014) and Zhou and Song (2013). In
Zhou and Song (2013), the boundedness and complete stability
of CVNNs with constant delay were investigated when activation
functionswere defined as f (z) = max(0, Re(z))+ imax(0, Im(z)).
In Hu and Wang (2012), a class of CVNNs with constant delays
was considered, and some sufficient conditions were obtained for
assuring the stability of the equilibrium point of CVNNs. In Xu
et al. (2014), the exponential stability of CVNNs with time-varying
delays and unbounded distributed delays was considered by using
the vector Lyapunov method. In Gong et al. (2015a), Rakkiyappan,
Velmurugan, and Cao (2015) and Velmurugan et al. (2015), authors
investigated the problem of µ-stability and multiple µ-stability
for CVNNs with unbounded time-varying delays. In Liu and Chen
(2016), authors considered a class of CVNNs with asynchronous
time delays and proved the exponential convergence directly,
while the existence and uniqueness of the equilibrium point is just
a direct consequence of the exponential convergence. In Gong et al.
(2015b), based on the matrix measure method and the Halanay
inequality, global exponential stability problem was investigated
for CVNNswith time-varying delays. In Rakkiyappan, Velmurugan,
and Li (2015), the complete stability of CVNNs with time delay
and impulsive effects was investigated, and some analytical results
to guarantee the complete stability of equilibrium points were
presented with the help of Lyapunov functionals, stability theory
and impulses.

On the other hand,when the activation functions cannot be sep-
arated into their real and imaginary parts, some stability criteria
of CVNNs were also obtained under assumptions condition that
activation functions satisfy the Lipschitz continuity condition in
the complex domain, for example, see Fang and Sun (2014), Pan,
Liu, and Xie (2015), Song, Zhao, and Liu (2015) and Zhang, Lin,
and Chen (2014). In Fang and Sun (2014) and Zhang et al. (2014),
by constructing appropriate Lyapunov functional, several suffi-
cient conditions to ascertain the existence, uniqueness, and glob-
ally asymptotical stability of the equilibrium point of CVNNs with

constant delay were provided in terms of linear matrix inequal-
ity. In Pan et al. (2015), the global exponential stability of a class of
CVNNswith time-varying delayswas investigated by applying con-
jugate system of CVNNs, fixed point theorem, contractionmapping
principle and a delay differential inequality. In Song et al. (2015),
a class of CVNNs with probabilistic time-varying delays is consid-
ered, several delay-distribution-dependent sufficient conditions to
guarantee the global asymptotic and exponential stabilitywere ob-
tained by constructing proper Lyapunov–Krasovskii functional and
employing inequality technique.

Although Rakkiyappan, Velmurugan, and Li (2015) considered
the impulsive effects on stability for CVNN with constant delay
when activation functions can be expressed by separating their
real and imaginary parts, to the best of the author’s knowledge,
however, very few results on the stability problem for impulsive
CVNN with time-varying delays under assumptions condition that
activation functions satisfy the Lipschitz continuity condition in
the complex domain.

Motivated by the aforementioned discussions, this paper shall
investigate the problem of global exponential stability for CVNNs
with both time-varying delays and impulsive effects. The main
contributions of this paper are the following aspects: (1) The
activation functions have not been separated into their real
and imaginary parts. (2) The established sufficient conditions to
ensure the existence, uniqueness and global exponential stability
of equilibrium point are expressed in terms of complex-valued
linearmatrix inequalities, which can be checked numerically using
the effective YALMIP toolbox in MATLAB. (3) Compared with the
results in Fang and Sun (2014), Gong et al. (2015b), Hu and Wang
(2012), Pan et al. (2015) and Zhang et al. (2014), our results are less
conservative and more general.

Notations: The notations are quite standard. Throughout this
paper, N+ denotes the set of positive integers; I represents the
unitary matrix with appropriate dimensions; Cn and Cn×m denote,
respectively, the set of all n-dimensional complex-valued vectors
and the set of all n × m complex-valued matrices. A∗ shows the
complex conjugate transpose of complex-valuedmatrix A. λmax(P)
and λmin(P) are defined as the largest and the smallest eigenvalue
of Hermitian matrix P , respectively. The subscript T denotes the
matrix transposition. The notation X > Y means that X and Y
are Hermitian matrices, and that X − Y is positive definite. i
shows the imaginary unit, i.e., i =

√
−1. |a| denotes the module

of complex number a ∈ C, and ∥z∥ denotes the norm of z ∈ Cn,
i.e., ∥z∥ =

√
z∗z. If A ∈ Cn×n, denote by ∥A∥ its operator norm, i.e.,

∥A∥ = sup{∥Ax∥ : ∥x∥ = 1} =
√

λmax(A∗A). For A = (aij)n×n ∈

Cn×n, |A| = |aij| denotes the modulus matrix of A. Sometimes, the
arguments of a function or a matrix will be omitted in the analysis
when no confusion can arise.

2. Model description and preliminaries

In this paper, we consider the following CVNNs with time-
varying delays
ż(t) = −Cz(t) + Af (z(t)) + Bf (z(t − τ(t))) + J, t ≠ tk,
z(t) = Dkhk(z(t−)) + Eksk(z(t− − τ(t−))) + J̄k, t = tk,

(1)

for t ≥ 0, k ∈ N+, where z(t) = (z1(t), z2(t), . . . , zn(t))T ∈ Cn,
zi(t) is the state of the ith neuron at time t; f (z(t)) = (f1(z1(t)),
f2(z2(t)), . . . , fn(zn(t)))T ∈ Cn, and f (z(t − τ(t))) = (f1(z1(t −

τ(t))), f2(z2(t − τ(t))), . . . , fn(zn(t − τ(t))))T ∈ Cn, are the
vector-valued activation functions without and with time delays
whose elements consist of complex-valued nonlinear functions;
τ(t) corresponds to the transmission delay and satisfies 0 ≤

τ(t) ≤ τ ; C = diag{c1, c2, . . . , cn} ∈ Rn×n is the self-feedback
connection weight matrix, where ci > 0; A ∈ Cn×n is the
connection weight matrix, B ∈ Cn×n is the delayed connection
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