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a b s t r a c t

This paper addresses themultistability for a general class of recurrent neural networks with time-varying
delays. Without assuming the linearity or monotonicity of the activation functions, several new sufficient
conditions are obtained to ensure the existence of (2K + 1)n equilibrium points and the exponential
stability of (K + 1)n equilibrium points among them for n-neuron neural networks, where K is a positive
integer and determined by the type of activation functions and the parameters of neural network jointly.
The obtained results generalize and improve the earlier publications. Furthermore, the attraction basins
of these exponentially stable equilibrium points are estimated. It is revealed that the attraction basins
of these exponentially stable equilibrium points can be larger than their originally partitioned subsets.
Finally, three illustrative numerical examples show the effectiveness of theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A general class of recurrent neural networks, proposed by Co-
hen and Grossberg (1983), have received extensive attention due
to theirwidespread applications in various areas. Different applica-
tions may rely on different underlying dynamic behaviors of neu-
ral networks. For many applications, especially in classification,
associative memory, pattern recognition, it is essential to deter-
mine the existence of multiple equilibrium points and their locally
stable properties. Thus the multistability analysis of neural net-
works has been an active area of research in recent years.

There are many remarkable results that have been presented
for multistability of neural networks, including Cohen–Grossberg
ones. In Zeng, Wang, and Liao (2004), the authors studied on the
multistability of recurrent neural networks through linearly par-
titioning the state space, which showed that the N × M-neuron
recurrent neural networks with one step piecewise linear activa-
tion function can have 3N×M equilibrium points and 2N×M of them
located in saturation regions were locally exponentially stable. In
Cheng, Lin, and Shih (2006), the authors investigated Hopfield-
type neural networks with sigmoidal activation functions and
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presented that the n-neuron Hopfield-type neural networks can
have 3n equilibrium points and 2n of them were asymptotically
stable. Cao, Feng, and Wang (2008) investigated multistability
andmultiperiodicity of delayed Cohen–Grossberg neural networks
with nondecreasing piecewise linear activation functions based
on the Cauchy convergence principle. Huang and Cao (2010) pre-
sented a delay-dependent multistability criterion for recurrent
neural networks with sigmoidal activation functions by construct-
ing Lyapunov functional and usingmatrix inequality techniques, in
which the obtained results are flexible and conservative. In Wang
and Chen (2012), the authors focused on the multistability of a
class of neural networks with Mexican-hat-type activation func-
tions, which were piecewise linear functions actually.

It should be noted that more locally stable equilibrium points
imply more storage capacity of neural networks. Moreover, the
number of locally stable equilibrium points is closely related
to geometrical configuration of activation functions. Hence it is
reasonable to construct some suitable activation functions to
increase the number of locally stable equilibrium points. In Wang,
Lu, and Chen (2010), Zeng and Zheng (2013), the neural networks
with a class of nondecreasing piecewise linear activation functions
with 2r corner points were investigated. It was revealed that the
n-neuron dynamical systems can have (2r + 1)n equilibria under
some conditions, with (r +1)n of them being locally exponentially
stable. In Wang and Chen (2014), the paper is concerned with the
problem of µ-stability of recurrent neural networks with K -level
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nonlinear monotone activation functions and unbounded time
varying delays, in which they could store (2K + 1)n equilibrium
points, (K + 1)n of them are locally µ-stable. Similar results were
presented in Rakkiyappan, Velmurugan, and Cao (2015). There are
many other valuable works on multistability of neural networks,
please refer to Cheng, Lin, Shih, and Tseng (2015), Cheng and Shih
(2009), Di Marco, Forti, Grazzini, and Pancioni (2012, 2014), Forti
(2002), Forti and Tesi (2001), Kaslik and Sivasundaram (2011), Nie
and Cao (2011), Song and Cao (2007), Wen, Huang, Zeng, Chen,
and Peng (2015), Zeng, Huang, and Zheng (2010), Zeng and Wang
(2006), Zeng and Zheng (2012) and the references cited therein.

To the best of our knowledge, in the existing literature (in-
cluding the works mentioned above) on multistability analysis,
the activation functions are usually chosen to be either nonde-
creasing or piecewise linear. But there are also many other notable
types of neural networks with both nonlinear and non-monotonic
activation functions requiring that neural networks have multi-
ple equilibrium points and their corresponding locally multista-
bility. For example, the Self-Organizing Map (SOM, commonly
also known as Kohonen network), widely used in various fields
especially in associative memory (Kohonen, 1989, 2001; Kosko,
1988), chooses nonlinear Mexican hat functions as its activation
functions. Radical basis function (RBF) networks, which can be
applied in classification, generally use Gaussian activation func-
tions (Orr, 1996). The trigonometric function (McCaughan, 1997;
Nakagawa, 1998), the Morita function (Morita, 1993), the Crespi
function (Crespi, 1999) and so on as activation functions used in
neural networks also share the common feature that they are all
nonlinear and non-monotonic. Furthermore, as pointed in Crespi
(1999), Morita (1993), Obayashi, Omiya, Kuremoto, and Kobayashi
(2008), Yoshizawa, Morita, and Amari (1993), the associative abil-
ity of neural networks can be improved significantly by using
non-monotonic, rather than monotonic, functions as activation
functions. Hence, it is necessary for us to study the multistability
of neural networks with non-monotonic activation functions.

With themotivations illustrated as above, ourmain objective in
this paper is to investigate the multistability of Cohen–Grossberg
neural networks with non-monotonic activation functions and
time-varying delays. We derive some sufficient conditions under
which the n-neuron Cohen–Grossberg neural networks with non-
monotonic activation functions and time-varying delays can have
(2K + 1)n equilibrium points, among which (K + 1)n equilibrium
points are locally exponentially stable, and also estimated the
attraction basins of these exponentially stable equilibrium points.

The remaining part of this paper is organized as follows. In
Section 2, backgrounds about the neural networkmodel and state-
space partition are given, then preliminary results in form of
lemmas for ascertaining the existence of multiple equilibrium
points of neural networks and positive invariance of partitioned
subsets are derived. Themain results on the exponential stability of
multiple equilibrium points of Cohen–Grossberg neural networks
with non-monotonic activation functions and time-varying delays
are presented in Section 3. In Section 4, the attraction basins
of multiple equilibrium points are estimated. In Section 5, three
numerical examples are given. Finally, some concluding remarks
are made in Section 6.

2. Model descriptions and preliminaries

Consider a class of Cohen–Grossberg neural networkwith time-
varying delays described as follows,

dxi(t)
dt

= −ai(xi(t))

bi(xi(t))−

n
j=1

cijfj(xj(t))

−

n
j=1

dijfj(xj(t − τj(t)))− Ii

, (1)

where i = 1, . . . , n, x = (x1, . . . , xn)T ∈ ℜ
n is the state

vector. ai(xi(t)) and bi(xi(t)) represent the amplification and the
self-signal functions, respectively, C = (cij)n×n and D = (dij)n×n
denote the normal and the delayed connection weight matrices,
respectively, fi(·) is a neuron activation function, Ii is a constant
external input. τi(t) corresponds to the transmission delay and
satisfies 0 ≤ τi(t) ≤ τ (τ is a constant).

Let C([−τ , 0],D) be the Banach space of functions map-
ping [−τ , 0] into D ⊂ ℜ

n with norm defined by ∥φ∥τ =

max1≤i≤n{sups∈[−τ ,0] |φi(s)|}, where φ(s) = (φ1(s), . . . , φn(s))T ∈

ℜ
n. The initial condition of (1) can be represented as φ(s) ∈

C([−τ , 0],ℜn), that is

xi(s) = φi(s), s ∈ [−τ , 0], i = 1, 2, . . . , n. (2)

We suppose that the parameters of neural network (1)
and activation functions in this paper satisfy the following
assumptions, respectively.

(A1) Each ai(u) is continuous and there exist positive constants ai
and āi such that ai ≤ ai(u) ≤ āi, for u ∈ ℜ, i = 1, . . . , n.

(A2) bi(·) and its inverse function b−1
i (·) are locally Lipschitz

continuous and there exists γi > 0 such that u[bi(u + r) −

bi(r)] ≥ γiu2, for all u, r ∈ ℜ, i = 1, . . . , n.
(A3) The activation functions fi(u) (i = 1, . . . , n) are continuous

and there exist constantsmi < Mi such that for i = 1, . . . , n,

mi ≤ fi(u) ≤ Mi, for any u ∈ ℜ.

(A4) There exist constants

−∞ ≤ q(0)i < p(0)i < q(1)i < p(1)i < · · ·

< q(K−1)
i < p(K−1)

i < q(K)i < p(K)i ≤ +∞,

λ
(k)
i , µ

(l)
i and nonnegative constants η(k)i , ν

(l)
i (k = 0, 1, . . . ,

K ; l = 1, . . . , K ; K is a positive integer) such that for i =

1, . . . , n

λ
(k)
i ≤

fi(u)− fi(v)
u − v

≤ η
(k)
i ,

for any u, v ∈ (q(k)i , p
(k)
i ), k = 0, 1, . . . , K ,

µ
(l)
i ≤

fi(u)− fi(v)
u − v

≤ ν
(l)
i ,

for any u, v ∈ [p(l−1)
i , q(l)i ], l = 1, . . . , K .

Remark 1. Assumptions (A1)–(A3) ensure the boundedness of the
solutions of the neural network (1), which are hypothesized in
many references dealing with the stability of neural networks
(Chen & Rong, 2004; Liao, Li, & Wong, 2004; Ye, Michel, & Wang,
1995). Moreover, Assumption (A1) also guarantees the invariance
of the inequality direction when investigating the stability of the
equilibrium points.

Remark 2. It should be noted that Assumption (A4) implies that
each activation function is Lipschitz continuous with different Lip-
schitz constants in different intervals. This is necessary owing to
the fact that the multistability analysis of neural networks is quite
different from mono-stability analysis. In mono-stability analysis,
the equilibrium point is unique and its global stability is consid-
ered, and usually we just assume that each activation function is
Lipschitz with one Lipschitz constant. In contrast in multistabil-
ity analysis, we should determine the number of the equilibrium
points first, which are closely related to the type of activation func-
tions, then we analyze the multistability and attractive domains of
some of these points. Hence, the state space needs to be partitioned
into several subsets, and the properties of activation functions are
generally assumed to vary with different partitioned intervals in
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