
Neural Networks 79 (2016) 1–11

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Regular expressions for decoding of neural network outputs
Tobias Strauß ∗, Gundram Leifert, Tobias Grüning, Roger Labahn
Department of Mathematics, University of Rostock, Rostock, Germany

a r t i c l e i n f o

Article history:
Received 15 September 2015
Received in revised form 21 February 2016
Accepted 11 March 2016
Available online 25 March 2016

Keywords:
Regular expressions
Decoding
Connectionist Temporal Classification
Handwriting recognition

a b s t r a c t

This article proposes a convenient tool for decoding the output of neural networks trained by
Connectionist Temporal Classification (CTC) for handwritten text recognition.We use regular expressions
to describe the complex structures expected in the writing. The corresponding finite automata are
employed to build a decoder. We analyze theoretically which calculations are relevant and which can be
avoided. A great speed-up results fromanapproximation.We conclude that the approximationmost likely
fails if the regular expression does notmatch the ground truthwhich is not harmful formany applications
since the low probability will be even underestimated. The proposed decoder is very efficient compared
to other decoding methods. The variety of applications reaches from information retrieval to full text
recognition. We refer to applications where we integrated the proposed decoder successfully.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Sequence labeling is the task of assigning a (class) label to each
position of an incoming sequence such as speech or handwriting
recognition. These tasks are typically very complex and even
subproblems are challenging. This article focuses on the decoding
problem i.e. finding the most likely label sequence for a given
output of a classifier such as neural networks (NNs), Hidden
Markov Models (HMMs) or Conditional Random Fields (CRFs).

Deep learning methods have pushed the research of complex
tasks such as handwritten text recognition (see Graves & Schmid-
huber, 2009). The special needs of such complex tasks require ad-
vanced decoding methods. For example, a typical subproblem in
full text recognition is structuring the recognizers output into a se-
quence of regions of words, punctuations and numbers. In many
cases, the most likely label sequence yields an acceptable segmen-
tation. However, it happens that this label sequence is not fea-
sible i.e. it does not match the expected structure and has to be
corrected. Finding the optimal feasible structure is one of many
applications of this article. For this aim, we describe feasible struc-
tures by regular expressions—a powerful pattern sequence which
is used in nearly all computational text processing systems such as
text editors and programming languages like Java or Python. We
then derive an algorithm based on finite automata that yields the

∗ Corresponding author.
E-mail addresses: tobias.strauss@uni-rostock.de (T. Strauß),

gundram.leifert@uni-rostock.de (G. Leifert), tobias.gruening@uni-rostock.de
(T. Grüning), roger.labahn@uni-rostock.de (R. Labahn).

most likely label sequence fitting the previously described regular
expression.

Beyond finding the optimal feasible label sequence fitting an
expected structure (regular expression), we gain several other
features since we also consider the functionality of capturing
groups. A capturing group defines a part of the regular expression.
The associated part of the matching label sequence can be used
to structure the decoding result for further analysis. In case of our
previous example, we obtain a complete segmentation into words,
numbers and symbols without additional parsing facilitating the
calculation of the matching subsequence and the likelihood. We
just define word, number and symbol capturing groups. The
complete decoding can be done in a few lines of code.

Keyword spotting is another obvious application which can be
solved very conveniently. The keyword is either the beginning of
the line or there is a space or another separating symbol (quota-
tion marks, opening parenthesis, etc.) before the keyword. With
the common notation of regular expressions, this pattern may be
captured by inserting (.*(?<pre>["(-]))? before the key-
wordwhichmeans: If there is anything before the keyword, it ends
with at least one of the aforementioned symbols. This last symbol
(if there is one) is contained in the capturing group pre. Informa-
tion about a group like its probability, containing text or its posi-
tions in the sequence are very important for the keyword spotting
andwill be provided directly by the derived algorithm. A low prob-
ability of the pre-group, for example,might indicate that a letter is
more likely than our separating symbol such that the spotted char-
acter sequence is only part of a larger word. Analogously, there is
an equivalent group after the keyword.

http://dx.doi.org/10.1016/j.neunet.2016.03.003
0893-6080/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.neunet.2016.03.003
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2016.03.003&domain=pdf
mailto:tobias.strauss@uni-rostock.de
mailto:gundram.leifert@uni-rostock.de
mailto:tobias.gruening@uni-rostock.de
mailto:roger.labahn@uni-rostock.de
http://dx.doi.org/10.1016/j.neunet.2016.03.003

2 T. Strauß et al. / Neural Networks 79 (2016) 1–11

Regular expressions can be very complex and the calculation of
the probability of all feasible sequences can be very time consum-
ing. We give an approximation of the most likely label sequence
which we motivate theoretically and experimentally. The approx-
imation is also fundamental to the proposed decoder since a con-
ventional A∗-search suffers from a combinatorial explosion of all
feasible sequences and leads to inefficient decoding times. It is de-
veloped for neural networks trained by Connectionist Temporal Clas-
sification (CTC). Thus, CTC-trained systems are assumed all over the
paper. Some of the currently most successful handwriting recogni-
tion systems were trained with CTC as shown in several compe-
titions. To give just one example, the probably most challenging
real world task is the Maurdor project which was won by A2IA in
2014 using CTC (seeMoysset et al., 2014). CTC is not limited to text
recognition. Recently the performance of several speech recogni-
tion systems trained with CTC equaled those of other state of the
art methods (e.g. Graves & Jaitly, 2014, Sak et al., 2015).

The proposed algorithm is an essential part of the award
winning systems (Leifert, Grüning, Strauß, & Labahn, 2014; Strauß,
Grüning, Leifert, & Labahn, 2014) which were also trained with
CTC. Recently, the system reaffirmed the capability by winning the
HTRtS15 competition (Sánchez, Toselli, Romero, & Vidal, 2015).

The performant connection between regular expressions and
machine learning algorithms has been investigated in previous
articles. In the context of speech recognition, Mohri, Pereira, and
Riley (2008) showed in detail how to incorporate static prior
knowledge like n-grams or phoneme models into finite state
transducers. Although the authors exploit similar models to do the
decoding, the purpose differs from ours since they model more
static connections between ton, speech and language while we
aim at a flexible, adaptive decoding algorithm. Earlier, Dupont,
Denis, and Esposito (2005) provided a comprehensive analysis
of links between probabilistic automata (i.e. automata with a
probabilistic transition) andHMMs froma theoretical point of view
finally concluding – among other – that there is a correspondence
between both models. This basically means, HMMs can be seen as
the probabilistic version of finite automata.

Some links between regular expressions, their corresponding
automata and HMMs are given in Krogh et al. (1998). The authors
showed how to create HMMs from regular expressions to detect
biological sequences. A similar but generalized approach is given
in Kessentini, Chatelain, and Paquet (2013). There the authors
construct a simplified HMM model for a general text line in the
context of word spotting. These text line models basically consist
of the keyword surrounded by space and filler models. They also
proposed an enhanced model where only the prefix or suffix of
the keyword is given. This model allows a set of feasible words
containing the defined prefix or suffix.

Recently, Bideault et al. published a similar approach to ours in
Bideault, Mioulet, Chatelain, and Paquet (2015). They proposed an
HMM–BDLSTM hybrid model for word spotting exploiting regular
expressions. Their model uses the posterior probability of the
network as emission probability of the HMM (which means using
P(y|x) as estimator for p(x|y), where x is the hidden variable and
y is the observation). Analogously to Kessentini et al. (2013), they
build small HMM models in advance (e.g. for a keyword, for digits
or letters) and combine them to a model capturing the regular
expression. The authors then applied their model to keyword and
‘‘regex’’ spotting.

In contrast to the above articles, we do not make use of an
HMM model. Yet in Kessentini et al. (2013), the HMMs work
only as convenient graphical model for decoding rather than as
classifier. Instead of using a generative model to find the most
likely sequence, our algorithm is based on the original graphical
structure of the regular expressions: The finite state automata. If
the automaton accepts a label sequence, it is feasible. Hence, we

are able to search in the output of a neural network for any regular
expression without any previously created or trained generative
model. That means as input simply serve a regular expression and
the network’s output matrix and the output is the most likely
sequence, their probability or the capturing groups defined by the
regular expression.

The remainder of this article is organized as follows: We first
give a formal definition of decoding (Section 2). In Section 3, we
give a brief introduction to regular expressions and automata.
Furthermore, we modify the automaton slightly to adapt it to
the NN-decoding requirements. We introduce the RegEx-Decoder
in Section 4. We finish with some experiments (Section 5) and
a conclusion. Appendix provides the proofs of our theorems for
theoretically interested readers.

2. Training and decoding

This section introduces the CTC training scheme for neural net-
works and some basic aspects of their decoding. We mainly fol-
low the notation of Graves, Fernández, Gomez, and Schmidhuber
(2006).

LetΣ be the alphabet andΣ ′ = Σ ∪ {⋆}where ⋆ is an artificial
garbage label (also called blank) indicating that none of the labels
fromΣ are present. We call the garbage label not a character (NaC)
in the following. An element of Σ is called character and appears
in the ground truth. Sequences from Σ∗ :=

t∈N Σ

t are called
words. Elements of Σ ′ are labels and represent different classes of
the NN. Sequences of (Σ ′)∗ are called paths. The most likely path
is called best path. Assume a neural network which maps an input
X1 to a matrix Y ∈

∞

T=1[0, 1]
T×|Σ ′| of probabilities per position

and label. i.e. yt,l denotes the probability for the lth label at position
t . Note that we assume that ∀t :

l yt,l = 1 and ∀t, l : yt,l > 0

throughout the paper.
To map a path π to a word z , one merges consecutive identical

πt and deletes the NaCs. Let F : (Σ ′)∗ → Σ∗ define the related
function which maps a path to a word. More precisely: F (π) =
D(S(π)) is the composition of two functions D and S where S
deletes all consecutive identical labels andD deletes all remaining
NaCs.

We assume that the likelihoods yt,c are conditionally indepen-
dent for distinct t given X . Thus, the likelihood of any path π is
given as

P(π|X) =
T

t=1

yt,πt . (1)

The probability of any word z is then the sum of the probabilities
of all paths mapping to z:

P(z|X) =

π∈F −1(z)

P(π|X).

Let z ∈ (Σ ′)∗ be the extension of the word z ∈ Σ∗, that means
we add a NaC before z , after z and between each pair of characters.
Thus, |z| = 2|z|+1. Then one could calculate P(z|X) in an iterative
manner: The forward variable αi(t) denotes the probability of the
prefix z1, . . . , z⌈ i−12 ⌉ of z at time t givenX and, hence,α1(t) denotes
the probability of the empty word prefix. Thus,

α1(t) =
t

t ′=1

yt ′,z1 =
t

t ′=1

yt ′,⋆.

1 In contrast to Y , both dimensions of X may vary.

Download English Version:

https://daneshyari.com/en/article/405929

Download Persian Version:

https://daneshyari.com/article/405929

Daneshyari.com

https://daneshyari.com/en/article/405929
https://daneshyari.com/article/405929
https://daneshyari.com

