
Neural Networks 79 (2016) 37–52

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Engineering neural systems for high-level problem solving
Jared Sylvester, James Reggia ∗

Department of Computer Science, University of Maryland, A.V. Williams Building, College Park, MD 20742, United States

a r t i c l e i n f o

Article history:
Received 16 December 2015
Received in revised form 11 March 2016
Accepted 17 March 2016
Available online 31 March 2016

Keywords:
Neuroengineering
Attractor neural networks
Gated neural networks
Top-down vs. bottom-up AI
Neural network problem solving

a b s t r a c t

There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a sym-
bolic, top-down approach vs. a neural, bottom-up approach to engineering intelligentmachine behaviors.
While neurocomputationalmethods excel at lower-level cognitive tasks (incremental learning for pattern
classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are
largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive prob-
lem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards ad-
dressing this limitation by developing a purely neural framework named galis. Our goal in this work is to
integrate top-down (non-symbolic) control of a neural network systemwith more traditional bottom-up
neural computations. galis is based on attractor networks that can be ‘‘programmed’’ with temporal se-
quences of hand-crafted instructions that control problem solving by gating the activity retention of, com-
munication between, and learning done by other neural networks. We demonstrate the effectiveness of
this approach by showing that it can be applied successfully to solve sequential card matching problems,
using both human performance and a top-down symbolic algorithm as experimental controls. Solving
this kind of problemmakes use of top-down attention control and the binding together of visual features
in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not
only be instructed on how to solve card matching problems successfully, but its performance also qual-
itatively (and sometimes quantitatively) matches the performance of both human subjects that we had
perform the same task and the top-down symbolic algorithm thatwe used as an experimental control.We
conclude that the core principles underlying the galis framework provide a promising approach to engi-
neering purely neurocomputational systems for problem-solving tasks that in people require higher-level
cognitive functions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Most artificial intelligence (AI) and cognitive modeling systems
fall into one of two general groups: systems that take a sym-
bolic, top-down approach, and those that adopt a neural, bottom-
up approach. The divide between these two strategies is both
long-standing and, at times, quite contentious. This conflict is re-
grettable because the two different strategies are in many ways
complementary rather than competitive: each of the two ap-
proaches has its own relative strengths and weaknesses. For
example, while neural systems excel at problems that involve
patternmatching, incremental learning, low level control, fault tol-
erance, and/or processing noisy data, they are less adept at han-
dling higher cognitive functions such as goal-directed reasoning,
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meta-cognition, and planning. Top-down symbolic methods are
largely just the opposite. This complementarity has been recog-
nized in the past (Reggia, Monner, & Sylvester, 2014) and lever-
aged effectively in a number of cognitive architectures (e.g., Sun &
Naveh, 2004).

The current limited abilities of neural architectures to cap-
ture critical aspects of high-level cognition put them at a tremen-
dous disadvantage relative to symbolic AI techniques when
trying to engineer neurocomputational systems for high-level
problem-solving tasks. Suchproblemsolving bypeople depends on
cognitive control, the process ofmanaging other cognitive processes
(Schneider & Chein, 2003). Examples of cognitive control include
such executive functions as shifting attention, response selection,
working memory maintenance, goal setting, and inhibition of ir-
relevant signals. Executive functions are primarily associated with
prefrontal cortex in the primate brain, and substantial recent work
has focused on localizing these functions to specific individual pre-
frontal regions (Burgess, Dumontheil, & Gilbert, 2007; Koechlin &
Summerfield, 2007).
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The limited ability of neurocomputational methods to support
higher-level cognitive/executive functions is somewhat surprising
in that the human brain handles such issues routinely, thereby es-
tablishing that neural computations have the capacity to do so. In
the work that we describe here, while we take inspiration from
human cognition and neuroscience, we are not trying to create ac-
curate models of either. Instead our primary focus is on how to
construct/engineer neural network systems for problem-solving
tasks that are competitive with top-down symbolic AI problem-
solving systems. Developing purely neurocomputational systems
for high-level problem solving could ultimately provide sev-
eral significant practical advantages. For example, when com-
pared to traditional top-down AI, neural computation is fault
tolerant, and it has the potential for great speed due to its in-
herent parallel processing (Haykin, 2009; Reggia et al., 2014).
The latter is particularly true given the recent increasing avail-
ability of parallel computing hardware such as neural network
chips and GPU clusters. Further, neurocomputational methods
have the ability to learn and adapt, something that will be
increasingly important in future AI systems of all kinds.

Studying neurocognitive architectures involving cognitive con-
trol is currently viewed as an important research direction (Roy,
2008), and the importance of developing neural computational
methods for cognitive control is likely to substantially increase
over the next decade as work on developing large-scale brain
and neurocognitive models accelerates. By large-scale models
we mean recent and ongoing research efforts to create neuro-
anatomically grounded simulations of all or major portions of
human/mammalian brain structure and function, or at least ma-
jor subsystems of the brain that span multiple cortical regions.
These models vary from extremely large networks of biologically-
realistic spiking neurons to those that aremore abstract, based on a
higher level of components such as cortical columns, or are focused
on simultaneously supporting human cognitive functions (e.g., de
Garis, Shuo, Goertzel, & Ruiting, 2010; Eliasmith et al., 2012;
Townsend, Keedwell, & Galton, 2014; Weems & Reggia, 2006;
Winder, Cortez, Reggia, & Tagamets, 2007). They are often inspired
by the view that the brain is organized as a network of regions
that are inter-connected via well recognized pathways. Specifi-
cally, the primate cerebral cortex is organized as a distributed
network of interacting cortical regions, exhibiting both functional
integration and functional segregation (Bressler & Menon, 2010;
Sporns, 2011; van Essen, Anderson, & Felleman, 1992). Large-scale
region-and-pathway models inspired by this viewpoint consist of
components (modules) that are neural network simulations of in-
dividual brain regions, e.g., Wernicke’s and Broca’s areas and the
arcuate fasciculus that connects them (Monner & Reggia, 2013;
Weems & Reggia, 2006). Work on large-scale neurocognitive mod-
els is increasing in part due to recent major funding initiatives
(Europe’s Human Brain Project, US brain Initiative, etc. (Abbott,
2013)).

A fundamental question arises in constructing large-scale neu-
rocognitive architectures like these: Is there an identifiable mini-
mal set of generic, region-level functions and interactions that can
be used to construct neural architectures that provide cognitive
control of human-like problem-solving behaviors? As one possi-
ble approach to answering this question, we have recently pro-
posed the galis framework (Sylvester, Reggia, Weems, & Bunting,
2013), where galis is an acronym for ‘‘Gated Attractors Learn-
ing Instruction Sequences’’. The methods used in galis are in-
tended to provide a general purpose framework within which
models for specific higher-level problem solving tasks can be in-
stantiated and trained using solely subsymbolic methods. While it
takes inspiration from the human brain and cognition, galis is not
intended to be a veridical model of either the brain or human rea-
soning. The central issue that galis addresses concerns how one

can adopt and extend purely neurocomputational methods to en-
gineer high-level cognitive control of the sort that can currently
only be readily modeled using top-down symbolic approaches.
galis assumes that one is interested in constructing a large-scale
region-and-pathway model of some aspect of human-level cog-
nition that is inspired by the organization of the cerebral cor-
tex, and perhaps other subcortical brain regions. An implication
of this assumption is that model brain regions must learn not
only the facts about a specific instance of a task, but also the pro-
cedure or ‘‘instruction sequence’’ that is needed to perform that
task in general. This focus on making problem solving dependent
on patterns stored in the network’s memory, rather than on the
network’s structure or ‘‘hardware’’, differs from many previous
models of cognitive control, and is intended to make galismodels
more generalizable: Their behavior can be changed by adjusting
which behavioral sequences are learned rather than by adjusting
the structure of the model itself.

galis answers the fundamental question above by adopting two
principles. First, galis assumes that each region in the cortical
network can be conceptualized as an attractor neural network —
a dynamical complex system whose activity is driven towards
certain preferred states. Attractor networks have been used
previously in cognitive control models (Farrell & Lewandowsky,
2002; Hoshino, Usuba, Kashimori, & Kambara, 1997; Jones &
Polk, 2002), but usually operate only with fixed-point attractors.
In contrast, galis’ attractors are designed to enable switching
between attractor states in ordered sequences. This is critical if
procedural information of the sort readily handled by top-down
symbolic AI methods is to be accommodated in memory:
procedures by their very nature must have temporal extents
and their component steps must be performed in a specific
order (Ismail & Shapiro, 2000). While multiple techniques have
been used to add similar dynamism to attractor nets (Brown,
Preece, & Hulme, 2000; Horn & Opher, 1996; Winder, Reggia,
Weems, & Bunting, 2009), galis uses an approach to learning
of temporally asymmetric connection weights that we recently
developed (Sylvester, Reggia, & Weems, 2011; Sylvester, Reggia,
Weems, & Bunting, 2010a).

Second, galis assumes that each cortical region cannot only
exchange information with other cortical regions in the form of
activity patterns, but can also gate other regions’ functions and
interactions. By gating here we mean that one cortical region can
modulate the functions of other regions, or open/close the flow of
information between other regions. The inspiration for adopting
gating as a central aspect of neural problem-solving systems comes
from past neuroscience research and neurobiologically-realistic
computational models suggesting that gating is an important
aspect of brain dynamics (Frank, Loughry, & O’Reilly, 2001;
O’Reilly & Frank, 2006; Sherman & Guillery, 2006; Singer, 2011;
Womelsdorf & Fries, 2009). While there have been numerous
theories posited for the biological structures that could directly
or indirectly underly such cortical gating, galis is agnostic about
the particular physiological implementation. Rather, we take the
existence of some suchmechanism as given and implement gating
as direct interactions between model cortical regions and their
connecting pathways.

In summary, the basic hypothesis being explored via galis is
that large-scale region-and-pathway models based on (1) repre-
senting procedures/programs as temporal sequences of attractor
states, and (2) allowingmodel regions to gate the behavior of other
model regions, provide a sufficient purely-neurocomputational
framework for engineering autonomous problem-solving systems
that can be competitive with the more traditional top-down
symbolic problem-solving systems that are used in AI. While our
previous work with galis was encouraging in showing that it
could successfully supportmodels for simpleworkingmemory ap-
plications such as the n-Back task used in psychological testing
(Sylvester et al., 2011, 2013), such applications were too simple to
seriously support this hypothesis; they had no need to generate
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