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a b s t r a c t

This study reports the design and implementation of a pattern recognition algorithm to classify
electroencephalographic (EEG) signals based on artificial neural networks (NN) described by ordinary
differential equations (ODEs). The training method for this kind of continuous NN (CNN) was developed
according to the Lyapunov theory stability analysis. A parallel structure with fixed weights was proposed
to perform the classification stage. The pattern recognition efficiency was validated by two methods, a
generalization–regularization and a k-fold cross validation (k = 5). The classifier was applied on two
different databases. The first onewasmade up by signals collected from patients suffering of epilepsy and
it is divided in five different classes. The second database was made up by 90 single EEG trials, divided
in three classes. Each class corresponds to a different visual evoked potential. The pattern recognition
algorithm achieved a maximum correct classification percentage of 97.2% using the information of the
entire database. This value was similar to some results previously reported when this database was
used for testing pattern classification. However, these results were obtained when only two classes were
considered for the testing. The result reported in this study used the whole set of signals (five different
classes). In comparison with similar pattern recognition methods that even considered less number of
classes, the proposed CNN proved to achieve the same or even better correct classification results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic detection and classification of EEG recordings have
become important fields of research for the development of
brain computer interfaces, security, interactive games andmedical
diagnosis systems (Bashashati, Fatourechi, Ward, & Birch, 2007;
Birbaumer, 2006; Goel et al., 1996; Hwang, Kim, Choi, & Im, 2013).
As a result, many algorithms for the EEG classification have been
proposed, but most of these algorithms are limited by the fact that
they are able to classify just one characteristic of themany that are
codified in the EEG signals (Nicolas-Alonso & Gomez-Gil, 2012).

Nevertheless that different methods have been proposed to
classify patterns that appear in the EEG signals as, for example,
spindles and K-complexes for sleep staging, epileptiform patterns
for epilepsy analysis, among others, all of themhave in common an
automatic system that uses some characteristics from the signals.
These characteristics are extracted from the EEG recording.
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In general, these pattern recognition algorithms are based
on different machine learning techniques such as autoregres-
sive modeling (Ge, Srinivasan, & Krishnan, 2007), Markov chains
(Boussemarta & Cummings, 2011), self-organizing maps (Allinson
& Yin, 1999), fuzzy c-means clustering techniques (Roy, Char-
bonnier, & Bonneta, 2014), neural networks (Kannathal, Rajen-
dra, ChooMin, & Suri, 2007) and coefficients of the wavelet
transform (Chang, Lin,Wei, Lin, & Chen, 2014), among others. Most
of these algorithms implement different pre-treatment algorithms
to construct the pattern vector that is to be evaluated in the clas-
sifier. This strategy can omit certain characteristics of the infor-
mation that may be relevant to the characterization of the signal.
This omission can be a consequence of the preliminary manipula-
tion of EEG signals before they are evaluated by the classifier (Riaz,
Hassan, Rehman, Niazi, & Dremstrup, 2015). Moreover, the con-
tinuous nature of the EEG signal is left out in the classifier struc-
ture (Akareddy & Kulkarni, 2013).

Although several pattern recognition schemes have been
applied over the years on EEG signals, static NN (SNN) (Weng
& Khorasani, 1996) based pattern recognition classifiers have
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gained significant prominence with respect to some other
alternatives (Gotman & Wang, 1991; Lu, Shin, & Ichikawa, 2004).
SNN have been successfully employed to determine complex, non-
linear, multidimensional mathematical relationships between
noisy uncertain sets of data with considerable dissimilar natures
(Dunne, 2006).

Nowadays, NN based pattern recognition solutions have been
frequently applied to classify EEG signals, especially in the do-
main of function approximation (Alotaiby, Alshebeili, Alshawi, Ah-
mad, & El-Samie, 2014), pattern recognition (Kasabova, Dhoblea,
Nuntalida, & Indiverib, 2013), automated medical diagnostic sys-
tems (Amato et al., 2013), decision support systems (Ubeyli, 2009),
time series prediction (Coyle, Prasad, & McGinnity, 2005), signal
processing (Sanei & Chambers, 2013), image processing. (Bose &
Liang, 1996; Hassoun, 1995; Haykin, 1999), wavelets (Chen, 2014)
and some others. The success of NN in pattern recognition is a
consequence of their capability to approximate nonlinear relation-
ships between the input and output pairs (Cybenko, 1989). There-
fore, themethod selected to adjust the weights in the NN structure
plays a key role on forcing a higher efficiency on the classification
task.

Approximation problems can be solved by employing either
supervised learning (Nait-Ali, 2009) (where the weights and
biases of the SNN are learned in the presence of training data
set) or unsupervised learning (where inputs are classified into
different clusters in a multidimensional space, in the absence of
targets’ training data). Today, supervised learning continues as the
most preferred option when pattern recognition algorithms are
employed. However,most of these algorithmswere executed using
patterns formed by vectors of characteristics. These vectors were
obtained as solution of preliminary signal processing algorithms
that usually do not take into account the continuous nature of
the EEG signal. Therefore, relevant information can be lost during
this preliminary process that can simplify the pattern recognition
algorithm.

Regarding the EEG signal pattern classification, several types of
SNNs have been proposed (Cheng-Jian & Ming-Hua, 2009). Most
of these solutions employed a supervised learning mode which
implies high levels of computational effort. Additionally, the
complexity and necessity of performing preliminary treatment
demand an extra processing effort that may compromise the
application of the pattern classifier to obtain an on-line pattern
recognition solution (Omerhodzic, Avdakovic, Nuhanovic, & Diz-
darevic, 2013).

This study proposes an alternative method to solve the
EEG signal pattern recognition problem. A class of CNN (Poznyak,
Sanchez, & Wen, 2001) is used to represent the relationship
between the EEG signal and its particular pattern class represented
by a sigmoid type of function. The CNN concept is defined by
the approximation provided by NN to the right hand side of
ODEs. The CNN structure preserves the highly parallel structure
that characterizes many of the usual pattern recognition forms.
By virtue of its parallel distribution, the proposed CNN is
tolerant under the presence of faults and external noises, able
to generalize the input–output relationships well and capable of
solving nonlinear approximation problems (Benvenuto & Piazza,
1992).

The pattern recognition method proposed in this study was
applied on the signals contained in the database taken from NA
(2012). The classification results obtained in this study were
compared to the ones obtained by other researchers (Guo, Rivero,
Dorado, Rabun̄al, & Pazos, 2010; Guo, Rivero, Seoane, & Pazos,
2009; Nigam, 2004; Tzallas, Tsipouras, & Fotiadis, 2007), who
applied signal classifiers based on SNN. This article is organized as
follows: Section 2 describes themathematical structure of the CNN
as a classifier and its parallel implementation for the classification

task, this section also describes the training and validation process.
Section 3 contains the description of the two databases that were
employed to test the CNN performance. Section 4 describes the set
of two databases used to evaluate the classification performance
achieved by the algorithm proposed here. Section 5 details the
simulation results obtained from the implementation of the CNN
to the two databases. Section 6 closes the article with some
conclusions and discussions.

2. CNN EEG pattern classification

There is a general method that must be applied including the
stages of training, validation and testing (despite the class of NN
used to perform the signal classification). The first stage on the EEG
signal classification requires defining a set of targets associated to
the specific class of EEG. Therefore, if the EEG signal is considered
as the input number j in the class i, ui,j to the NN, then the
output, namely xi corresponds to the specific classwhere the signal
belongs to the L available classes. Then, the state xi corresponds to
the concept of target. For this study, this target was represented as
a sigmoid function described by:

xl(v) =
al

1 + e−cv
(1)

where the variable xl represents the target that belongs to class
l (l = 1, . . . , L). The positive constant al wasmodified according to
the class where the particular EEG signal belongs. These constants
served to modify the amplitude of the sigmoid function and then
to characterize each class. The positive constant c was chosen to
regulate the slope of the sigmoid function. One may notice that
different functions could be selected to define the characteristic
of a class but according to the Cybenko’s seminal paper (Cybenko,
1989), this selection (sigmoid function) seems to be more natural.

The training process consisted of comparing the output of the
NN with the target xl(v) when they both are affected by the
same EEG signal. The training process consisted of executing the
evaluation of the NNwith a percentage of all EGG signals ul

r(v) that
represents the r signal in the class l (r ∈ [1,Nl] ,

L
l=1 Nl = N ,N

is the number of signals of the entire database) signal in the class
l. Then when the EEG signal ul

r+1(v) is executed, the set of weights
produced by this training step W ∗,l is used a part of NN in this
training stage.

Once the whole set of N signals selected to perform the training
process has been tested, L different sets of weightsW ∗,l

Nl
have been

produced. If the training process has been correctly executed, the
aforementioned weights are recovered as part of a set of L non-
adjustable NN with the same structure as the one used during
the training. This part of the process is named the validation
stage. Based on the well-known generalization–regularization and
k-cross validation methods, a percentage of the whole set of EEG
signals ul

r(v) is used to evaluate the output of the set of L NN with
the corresponding set of W ∗,l

1,Nl
and W ∗,l

2,Nl
. At this part of the

validation, all the LNN are evaluated in parallel. The output of each
NN named NNl is compared with the corresponding value al. The
mean square error al − xlr is calculated over the period of time
corresponding to the length of the EEG signal, that is

JT ,l = T−1
 T

t=0


al − xlr(t)

2
dt.

One must notice that the length of all the testing signals was kept
constant. The selection of T should be done according to the nature
of signal. This is still a matter of interest and many studies have
been proposed during the last 50 years. In this particular case, the
window size was selected in agreement to the results presented
in Kuncheva and Zliobaite (2009).
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