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a b s t r a c t

Nyström method has been widely used to improve the computational efficiency of batch kernel learning.
The key idea of Nyström method is to randomly sample M support vectors from the collection of T
training instances, and learn a kernel classifier in the space spanned by the randomly sampled support
vectors. In this work, we studied online regularized kernel learning using the Nyström method, with a
focus on the sample complexity, i.e. the number of randomly sampled support vectors that are needed to
yield the optimal convergence rate Oð1=TÞ, where T is the number of training instances received in online
learning. We show that, when the loss function is smooth and strongly convex, only Oðlog 2 TÞ randomly
sampled support vectors are needed to guarantee an Oðlog T=TÞ convergence rate, which is almost
optimal except for the log T factor. We further validate our theory by an extensive empirical study.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Kernel machines are powerful tools to handle non-linear data
learning tasks. Kernel function improves the flexibility of learning
methods by implicitly mapping data to a high dimensional space
[1]. Kernel based methods have been successfully applied to
classification, dimensionality reduction, and clustering, including
kernel SVM [2], kernel logistic regression [3], kernel PCA [4] and
spectral clustering [5].

A main drawback of kernel based methods is their high demand
on both storage space and computational cycles. Given T training
instances, the storage requirement and computational cost are OðT2Þ.
Online learning improves the efficiency of kernel learning by going
through the training data once [6–8]. Although it reduces the storage
requirement by retrieving training instances one by one in online
settings, its time complexity is still OðT2Þ because each received
training instance can potentially be a support vector. Budget online
learning [9–12] ameliorates this problem by limiting number of
support vectors of the intermediate classifiers obtained by online
learning. But the final classifier obtained by online-to-batch conver-
sion [13] may still include most of the training examples as support
vector, leading to a high computational cost in prediction.

An alternative approach to efficient kernel learning is to gen-
erate a compact representation for the target kernel classifier.
Random Fourier feature [14] and polynomial feature [15,16] are

two examples of this category. Both methods approximate kernel
function by an expansion of appropriate basis functions. Since the
approximation is made independently from data, both schemes
are data independent, and therefore often leads to suboptimal
performance, according to the analysis in [17].

In this work, we focus on Nyström method [18], another pop-
ular scheme for improving the efficiency of kernel learning. It
randomly samples M instances as support vectors from a collec-
tion of T training examples, and learns a kernel classifier in the
subspace spanned by the randomly sampled support vectors.
Nyström method was first introduced to kernel learning in [19],
and has found applications in kernel classification [20,21], spectral
clustering [22], and eigenmap embedding [23].

The generalization performance of Nyström method was
examined recently in [17], in which the authors show that Nyström
method is overall more effective for batch kernel learning than
random Fourier feature because of the data dependence induced by
Nyström method. Unlike [17] where the effect of Nyström method
was examined in batch learning, we focus on online regularized
kernel learning where training examples are received sequentially
with one at each time, and every training example will be discarded
after it is used to update the prediction model. We show that, in
online regularized kernel learning, only Oðlog 2TÞ randomly sam-
pled support vectors are needed to achieve an Oðlog T=TÞ con-
vergence rate. Compared to the optimal convergence rate Oð1=TÞ for
online regularized kernel learning, our result is almost optimal
except for the log ðTÞ factor. We verify our theory by an extensive
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empirical study. To the best of our knowledge, this is the first work
that analyzes the performance of Nyström method in online set-
tings, with nearly optimal guarantee.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related work on kernel learning and Nyström method.
Section 3 describes online regularized kernel learning with
Nyström method in details, and present our theoretical guaran-
tees, where the detailed proof can be found in the Appendix.
Section 4 demonstrates our theory by an extensive empirical
study. Section 5 encloses our paper with future work.

2. Related work

In this section we briefly review the related works on kernel
learning.

2.1. Kernel learning

As mentioned in the introduction section, the main challenge
arising from kernel learning is its high demand on computational
cycles and storage space. Below we list several major efforts in
improving the efficiency of kernel learning.

Explicit kernel feature mapping: Explicit kernel feature mapping
approximates a kernel similarity function by a finite feature
representation of data. When the kernel is shift-invariant, it can be
accomplished by random Fourier sampling [14]. It was shown in
[24] that the generalization error caused by random Fourier fea-
tures is bounded by Oð1=

ffiffiffiffiffi
M

p
Þ, where M is the number of random

Fourier features. When kernel is not shift-invariant, polynomial
feature representation is often used to approximate the kernel
function by a truncated Taylor expansion [25,15,16]. The key lim-
itation of methods in this category is that the kernel approxima-
tions are made independently from the data distribution, leading
to suboptimal performance as argued in [17].

Batch sparse kernel learning: Sparse kernel learning aims to com-
pute a compact representation of kernel classifier with a limited
number of support vectors. A common idea is to confine the support
vectors in a reduced set of training data [26,27]. The reduced set is
constructed either by a greedy method [3,28] or by minimizing some
criterion as a complementary process [26,29,30]. In [31,32], the
authors consider approaches for sparse kernel learning by making
appropriate changes to the objective function. In [30], the authors
propose to first learn a dense kernel SVM through batch learning, and
then approximate the learned SVM by a sparse one. Although the
output classifier is sparse in support vectors, most methods in this
category are expensive in both storage space and computational cost
as they have to deal with the full kernel matrix in the first place.

Budget online learning: Budget Online Learning restricts the
number of support vectors to a given budget. Crammer et al. [9]
propose the first budget online learning, which was refined later on
in [10]. The key of these approaches is to remove the support vec-
tors of least significance to maintain the budget. The Forgetron [33]
is the first budget online learning with theoretical guarantees. It
decreases the weights of support vectors at each iteration of online
learning and removes the support vectors with the smallest weight
when the number of support vectors exceeds the budget. Rando-
mized Budget Perceptron [34] achieves similar bounds as Forgetron
by replacing one of the randomly selected support vectors with new
instances. Projectron [35] improves these ideas by making a new
training example to be a support vector only when it is far from the
space spanned by the existing support vectors. Peilin et al. [8]
developed a stochastic gradient descent based method for budget
online learning. Very recently, Wang et al. [36] study the con-
vergence rate of online kernel with random Fourier features and
Nyström features. Although their analysis is very similar with ours,

they only give a linear sampling complexity for Nyström features,
which is significantly inferior than the results presented in this
paper. It is important to note that our method needs to sample
support vectors beforehand and needs independent assumptions,
that are not required in conventional analysis. The method pro-
posed in this paper can be viewed as an extension of Projectron
with online-to-batch conversion. In our analysis, the optimal con-
vergence rate is only possible with online-to-batch conversion, thus
it is not surprising that Projectron cannot provide such guarantee.

Sparse online kernel learning: Sparse online kernel learning
maintains a sparse support vector set at each online step and out-
puts a compact kernel machine without having to take the online-
to-batch conversation. Engel et al. [37] proposed a sparse kernel
support vector machine for kernel regression, where a new training
instance is added into the set of support vectors only when it
cannot be linearly approximated by current support vectors. Their
method does not provide any guarantee on generalization bounds.
Zhang et al. [11] proposed a stochastic gradient method for sparse
online kernel learning that shares the similar idea as [8].

2.2. Nyström method

Nyström method was first proposed by Nyström [18]. It was
introduced by Williams and Seeger [19] to accelerate kernel
learning, followed by [20]. Various sampling schemes have been
proposed to improve the effectiveness of Nyström method [38,39].

Nyström method is often viewed as a low rank matrix approx-
imation method: it approximates the kernel matrix K by a low rank
matrix bK . Several analyses have been developed to bound the dif-
ference between K and bK [20,40–43]. The most interesting result is
given in [40,41], which stated that when the rank of kernel matrix is
r, only Oðr log rÞ samplings is needed by Nyström method to
achieve a zero error in approximating the kernel matrix. The impact
of the low rank approximation made by Nyström method on the
generalization performance of kernel learning was studied in [44].
In [17], the authors proved that the generalization error caused by
Nyström method is low bounded by OðN=MÞ, where N is the
number of training instances, which can be improved to OðN=Mp�1Þ
if the eigenvalues of the kernel matrix follow a p power law. Dif-
ferent from the existing studies, we focus on the generalization
performance of Nyström method in the online setting.

3. Online kernel learning with nyström method

3.1. Background and notation

Let κð�; �Þ be a bounded kernel function, i.e., 8x; x0AX ,
jκðx; x0Þjr1. Denote by H the Reproducing Kernel Hilbert Space
(RKHS) endowed with κð�; �Þ. Let �; �h iH be the inner product on H
and J � JH be the corresponding norm. Let zt ¼ fxt ; ytg; t ¼ 1;…; T
be the sequence of training examples received in the online set-
ting, where xtAXDRd is a column vector of d dimension and the
label ytAfþ1; �1g. We assume that all the training examples are i.
i.d. samples from an unknown underlying distribution Pðx; yÞ.

Given the sequence of training examples fz1; z2;…; zT g, we
define the kernel matrix KART�T by Ki;j ¼ κðxi; xjÞ. Through out the
paper, we assume that the kernel to be bounded,

jκðx; yÞjr1:

We denote by X the set of training instances, and by V the set of
support vectors, i.e.,

X9fx1; x2;…; xT g; V9fx̂1; x̂2;…; x̂Mg;
where each x̂i is a support vector used by the kernel classifier and
M is the number of support vectors. We define HV , the subspace
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