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a b s t r a c t

In this paper, we propose a kernel for nonlinear dimensionality reduction over the manifold of Sym-
metric Positive Definite (SPD) matrices in a Motor Imagery (MI)-based Brain Computer Interface (BCI)
application. The proposed kernel, which is based on Riemannian geometry, tries to preserve the topology
of data points in the feature space. Topology preservation is the main challenge in nonlinear dimen-
sionality reduction (NLDR). Our main idea is to decrease the non-Euclidean characteristics of the
manifold by modifying the volume elements. We apply a conformal transform over data-dependent
isometric mapping to reduce the negative eigen fraction to learn a data dependent kernel over the
Riemannian manifolds. Multiple experiments were carried out using the proposed kernel for a dimen-
sionality reduction of SPD matrices that describe the EEG signals of dataset IIa from BCI competition IV.
The experiments show that this kernel adapts to the input data and leads to promising results in
comparison with the most popular manifold learning methods and the Common Spatial Pattern (CSP)
technique as a reference algorithm in BCI competitions. The proposed kernel is strong, particularly in the
cases where data points have a complex and nonlinear separable distribution.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In brain–computer Interface systems that use motor imagery,
brain activity is usually captured in the form of EEG signals and is
transferred to an external device [27]. Extracting information from
EEG signals is carried out by using different pattern recognition
methods involving feature extraction, dimensionality reduction,
and classification [32,49,51] to ultimately determine the user's
mental state [28,36].

Several techniques are available for extracting features from
EEG signals [25,4,7,8]. A common spatial pattern algorithm [38,7]
and a spatial covariance matrix of a signal [4,5,9] are two major
approaches to represent EEG signals in BCI applications. CSP can
be considered to be a dimensionality reduction technique that
learns spatial filters that maximize class separability. A spatial
covariance matrix of the EEG signal, which lies in the space of
symmetric positive definite matrices, can be formulated as a
connected Riemannian manifold [2]. In recent years, methods
using a spatial covariance matrix have attracted considerable
attention [10,4,5,9].

In BCI application, samples are usually represented by large
feature vectors. Therefore, these problems suffer from the curse of
dimensionality [28]. Different research efforts have attempted to
overcome the problem of the curse of dimensionality in the BCI
literature. Zhang et al. [51] introduced Spatial-Temporal Dis-
criminant Analysis (STDA) as a multiway extension of Linear Dis-
criminant Analysis (LDA). They attempted to maximize the dis-
crimination between two classes by finding two projections from
the spatial and temporal information [52]. These projections
reduce the dimensionality of the features that feed into the dis-
criminant analysis. To overcome the problems of the curse of
dimensionality and the bias-variance tradeoff for Event-Related
Potential (ERP) classification in BCI applications, Zhang et al. [50]
introduced Aggregation of Sparse Linear Discriminant Analysis
(ASLDA). They introduced a sparse LDA to reduce the dimension-
ality. For this purpose, sparse discriminant vectors were learned by
solving a l1-regularized Least Squares Regression (LSR). Sparse CSP
that uses a linear combination of a subset of channels was intro-
duced by Goksu et al. [20]. They proposed a generalized eigenvalue
decomposition based on a greedy search to identify multiple
sparse eigenvectors to compute spatial projections. They showed
the effectiveness of the sparse CSP in comparison with the tradi-
tional CSP by examining the datasets in the BCI competition
(2005). Wu et al. [46] used a statistical framework to provide a
spatio-temporal representation of the EEG trials. They modeled
the variance of source signals as random variables and proposed a
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hierarchical Bayesian model for retrieving the inter-trial variability
of amplitude in a sparse way to provide a reduced representation
of data [46].

In the case of representing EEG signals by spatial covariance
matrices, although this representation reduces the length of the
descriptors in comparison with the raw EEG, this reduction is not
sufficient to overcome the curse of dimensionality. Dimensionality
reduction over the space of SPD matrices by considering the Rie-
mannian geometry of the SPD matrices has difficulties in com-
parison with treating the points as Euclidean objects [4]. For-
mulating covariance matrices as a connected Riemannian manifold
[4] leads to a nonlinear relationship between observations and
latent variables. Therefore, NLDR techniques are required to
reduce the dimensionality over this manifold. Several techniques
are adapted to the cases where the relationships between obser-
vations and latent variables are nonlinear [24]. Popular NLDR
techniques, such as locally linear embedding (LLE) [39], local
tangent space alignment (LTSA) [48], Laplacian Eigenmap (LE) [6],
and Isomap [41], have been applied to the manifolds. However,
these techniques all have shortcomings on the manifold of SPD
matrices. These shortcomings stem from ignoring the geometrical
structure of the manifold (i.e., living the manifold in the non-
Euclidean space and performing computations by assuming that
the data points are embedded in Euclidean space) [17].

In this paper, we attempt to overcome the curse of dimen-
sionality in the SPD matrix space in BCI applications by learning a
kernel that is adapted to the manifold by considering the Rie-
mannian geometry of the manifolds. The main contribution of this
paper is learning a kernel by minimizing a measure that shows the
non-Euclidean characteristics of the manifold by changing the
volume elements, while preserving the geometry, of the input
space. This minimization is especially useful in the cases where the
data points lie on a manifold with a nonzero intrinsic curvature.
The proposed kernel, when applied in multi-dimensional scaling
[21], provides an NLDR technique that is well adapted to the
manifold of SPD matrices.

The rest of the paper is organized as follows. In Section 2, we
describe mathematical preliminaries that are required for learning
over Riemannian manifolds and understanding the proposed
modifications in the feature space. Section 3 provides more details
on learning a data-dependent kernel by preserving geometry.
Section 4 reports our experiments on a BCI data set. Our findings
are discussed in Section 5, and concluding notes are mentioned in
Section 6.

2. Preliminaries

In this section we describe basic concepts of Riemannian geo-
metry that are necessary to understand our proposed approach.
We review the metric applied in the SPD matrix space, its asso-
ciated log and exp map, and the kernel functions from a geome-
trical point of view [22,23].

2.1. Riemannian geometry

The Riemannian metric on the Riemannian manifolds is a
positive definite metric that takes two tangent vectors as inputs
and generates a real number, which is a generalization of the inner
product, and allows the similarity or dissimilarity of two points on
the manifold to be measured [13,16,45]. A common invariant
Riemannian metric on the tangent space of the SPD matrices
[15,33,34] is defined as

oy; z4X ¼ traceðX� 1
2yX�1zX� 1

2Þ ð1Þ

where X denotes a point on the manifold and y and z show tangent
vectors in the tangent space formed at point X.

The length of the curves along the manifold is computed by
integrating the metric tensor along the curve, which connects two
points on the manifold [13,26]. The geodesic, which is the local
distance-minimizing curve over the manifold of SPD matrices
associated with a metric from Eq. (1), is computed as

dG
2 X;Yð Þ ¼ o log X Yð Þ; log X Yð Þ4X ¼ trace log 2 X�1=2YX�1=2

� �� ��

ð2Þ
where X and Y are two points on the manifold, log X Yð Þ is the
Riemannian log map of point Y to the tangent space formed at
point X, and dG denotes the geodesic distance on the manifold of
the SPD matrices [42]. The Riemannian log map projects a point
on the manifold to a point in tangent space. Its inverse is Rie-
mannian expX yð Þ, which projects a tangent vector yATXM into a
point Y on the manifold.

The Riemannian exponential and logarithmic mappings asso-
ciated to the metric of Eq. (1) are defined as

expX yð Þ ¼ X1=2exp X� 1
2yX� 1

2

� �
X1=2 ð3Þ

log X Yð Þ ¼ X1=2 log X� 1
2YX� 1

2

� �
X1=2 ð4Þ

where exp and log are matrix exponential and logarithmic func-
tions that are calculated as:

exp Σ ¼
X1

k ¼ 0

Σk

k!
¼U exp Dð ÞUT ;Σ ¼UDUT

log Σ ¼
X1

k ¼ 1

ð�1Þk�1 Σ� Ið Þk
k

¼U log Dð ÞUT ; Σ ¼UDUT ð5Þ

Eq. (5) assumes that Σ is decomposed into eigenvalues and
vectors. Note that exp operator on the matrices always exists,
while the log operator is defined only on symmetrical matrices
with positive eigenvalues [15].

2.2. Kernel geometry

Kernel function Kð:; :Þ corresponds to the inner product in a
high dimensional space H.

K x; x0ð Þ ¼φ xð Þ:φ x0ð Þ ð6Þ
where φ is a projection of the input space S into the higher
dimensional space H. The kernel function K :; :ð Þ induces a Rie-
mannian metric to S using mapping φ, which is computed as [1,45]

gij x; x
0ð Þ ¼ ∂

∂xi
∂
∂x0j

K x; x0ð Þj x ¼ x0 ð7Þ

where xi denotes ith basis of vector x. Eq. (7) is written in Einstein
summation notation. The volume element corresponding to the
induced metric in input space is computed as [45]

dV ¼
ffiffiffiffiffiffiffiffiffi
g xð Þ

p
dx1…dxn ð8Þ

where g xð Þ represents the determinant of the matrix whose ele-
ments are gij and dV denotes the volume element. The expressionffiffiffiffiffiffiffiffiffi
g xð Þ

p
is a factor that controls the expansion and contraction of

volume elements [44].

2.3. Kernel principal component analysis

Kernel Principal Component Analysis (KPCA) (Algorithm 1)
[40], which is widely used in dimensionality reduction and
denoising applications, is a nonlinear generalization of principal
component analysis (PCA) [19]. Classical PCA is designed to reduce
dimensionality in the cases where the manifold is linearly
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