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a b s t r a c t

This paper is concerned with the synchronization problem for a class of delayed chaotic neural networks
with discontinuous activations. First a lemma which concerns stability in general decay rate is con-
structed. Based on this lemma, the general decay synchronization stability criteria of discontinuous
neural networks are derived via a designed controller. The general decay synchronization is obtained by
introducing a decay function and it contains exponential synchronization and polynomial synchroni-
zation as its two special cases. Finally, two examples are given to verify the effectiveness of the obtained
results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since Pecora and Carroll firstly introduced chaos synchronization
in 1990 [1], chaos synchronization has been extensively studied due
to its potential applications such as secure communication, infor-
mation processing, and biological systems [2–7]. It is shown that
delayed neural networks can exhibit chaotic behavior provided that
the parameters and delays are appropriately chosen [8]. Therefore,
synchronization and chaotic control of neural networks has been
one of the hot research topics in the past decades. Moreover, lots of
synchronization results have been obtained under different control
approaches, such as feedback control [9–13], adaptive control
[14–17], impulsive control [18], sampled-date control [19], inter-
mittent control [20], and finite-time control [21].

It is worth noting that the activations of neural networks model in
these papers are assumed to be continuous. A recent paper [22] has
pointed out the interest for studying global convergence of general
neural networks with discontinuous neuron activations. Dis-
continuous neuron activations are frequently encountered in the
practical applications, and the system of neural networks with dis-
continuous activations has been proved really useful as an ideal
model for the case where the gain of the neuron amplifiers is very
high [23]. So recently, dynamical behaviors including the stability

and synchronization of delayed neural networks with discontinuous
activations have received a great deal of attention and have been
extensively studied in the literature [24–32]. In [25,26], quasi-
synchronization of discontinuous neural networks was investigated,
i.e. the synchronization error can only be controlled within a small
region around zero. It is also reported in [25] that complete syn-
chronization cannot be achieved between the identical drive and
response systems due to the discontinuity of activation functions.

In light of the above analysis, in this paper, we study the syn-
chronization problem for a class of delayed neural networks with
discontinuous activations. There are three advantages that make
our approach attractive. Firstly, differential inclusion, nonsmooth
analysis and control theory are employed to handle system with
discontinuous right-hand sides. Secondly, a new crucial lemma
which includes and extends the classical exponential stability
theorem is constructed. The new lemma provides a new result on
the stability in general decay rate by introducing a decay function.
Then synchronization in general decay rate for discontinuous
neural networks is obtained by using the lemma. Thirdly, the
complete synchronization in general decay rate studied in our
paper contains exponential synchronization and polynomial syn-
chronization as its two special cases.

The rest of this paper is organized as follows. The system and
some preliminaries are introduced in Section 2. In Section 3, by
constructing a new lemma, the general decay synchronization
criteria are established for discontinuous delayed neural networks
via a nonlinear controller. Then, numerical simulations are given to
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demonstrate the effectiveness of the obtained results in Section 4.
Finally, conclusions are drawn in Section 5.

Notations: Through this paper, Rþ denotes the set of all positive
real numbers, Rn denotes the n-dimensional Euclidean space and
Rn�n denotes the set of all n� n real matrices. For any vector xARn,
its Euclidean norm is denoted as J � J , i.e. JxJ ¼

ffiffiffiffiffiffiffi
xTx

p
. AT and A�1

stand for the transpose and the inverse of the matrix A, respec-
tively; A40ðAZ0Þ means that the matrix A is symmetric and
positive definite (semi-positive definite); λmaxðAÞ denotes the
maximum eigenvalue of matrix. ‖A‖1 ¼maxif

Pn
j ¼ 1 jaij j g; ‖A‖1 ¼

maxjf
Pn

i ¼ 1 jaij j g. diagð�Þ denotes a block-diagonal matrix. I is the
identity matrix with appropriate dimension. signð�Þ denotes the
signum function.

2. System description and preliminaries

In this paper, we consider a class of chaotic neural networks
with time-varying delay as follows:

_xðtÞ ¼ �DxðtÞþAf ðxðtÞÞþBgðxðt�τðtÞÞÞþ J; ð1Þ
where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT ARn is the state vector. D¼ diag
ðd1; d2;…; dnÞ is an n� n diagonal matrix with di40; i¼ 1;2;…;n.
A¼ ðaijÞn�n;B¼ ðbijÞn�nARn�n are the connection weight matrix
and delayed connection weight matrix, respectively. f ðxðtÞÞ ¼
ðf 1ðx1ðtÞÞ;…; f nðxnðtÞÞÞT ARn and gðxðt�τðtÞÞÞ ¼ ðg1ðx1ðt�τðtÞÞÞ;…;
gnðxnðt�τðtÞÞÞÞT ARn are the neuron activation functions. τðtÞ is the
time-varying delay. J ¼ ðJ1; J2;…; JnÞT is the external input vector.

Throughout this paper, the following assumptions are given for
system (1).

(A1) For every j¼ 1;2;…;n; f j; gj : R-R are continuous except
on a countable set of isolate points fρj

kg, where the finite right and
left limits f þj ðρj

kÞ; gþ
j ðρj

kÞ and f �j ðρj
kÞ; g�

j ðρj
kÞ exist, respectively.

(A2) For each j¼ 1;2;…;n, there exist constants hj; kj; rj4
0; sj40, such that

supjξj�ζj jrhj ju�vj þrj;

supjϱj�νj jrkj ju�vj þsj; ð2Þ
for all u; vAR, where ξjAK½f jðuÞ�; ζjAK½f jðvÞ�;ϱjA K½gjðuÞ�;νjAK½gj
ðvÞ�;K½f jðxÞ� ¼ ½minff �j ðxÞ; f þj
ðxÞg;maxff �j ðxÞ; f þj ðxÞg�;K½gjðyÞ� ¼ ½minfg�

j ðyÞ; gþ
j ðyÞg, maxfg�

j ðyÞ;
gþ
j ðyÞg� for x; yAR.
(A3) The time-varying delay τðtÞ is bounded and there exist τ

40;μ40 such that

0rτðtÞrτ; _τðtÞrμo1; ð3Þ
for all tZ0.

Remark 1. It is worth noting that ξj;ϱj may not be equal to ζj;νj
even u¼v if u is a discontinuous point. So the constants rj; sj in
assumption (A2) are necessary, which is the essential difference
between this paper and the previous literature where the Lipschitz
condition was used.

Since system (1) is a discontinuous system, its solution is dif-
ferent from the classic solution and cannot be defined in the
conventional sense. So we introduce the Filippov solution [34].

Definition 1 (Filippov [34]). For a system with discontinuous
right-hand sides:

dx
dt

¼ FðxÞ; xð0Þ ¼ x0; xARn; tZ0: ð4Þ

A set-valued map is defined as

ΦðxÞ ¼ ⋂
δ40

⋂
μðNÞ ¼ 0

K½FðBðx; δÞ⧹NÞ�;

where K½E� is the closure of the convex hull of set E, E� Rn,

Bðx; δÞ ¼ fy : Jy�xJoδ; x; yARn; δARþ g, and N� Rn, μðNÞ is the
Lebesgue measure of set N.

A solution (in Filippov's sense) of system (4) with initial con-
dition xð0Þ ¼ x0ARn is an absolutely continuous function xðtÞ; tA
½0; T �; T40, which satisfy xð0Þ ¼ x0 and differential inclusion:

dx
dt

AΦðxÞ; for a:a: tA ½0; T �:

Now we extend the concept of the Filippov solution to the
discontinuous system (1) as follows:

Definition 2 (Forti et al. [23]). A function x : ½�τ; TÞ-Rn; TA
ð0; þ1�, is a solution (in Filippov's sense) of the discontinuous
system (1) on ½�τ; TÞ, if:

(i) x is continuous on ½�τ; TÞ and absolutely continuous on
½0; TÞ;

(ii) x(t) satisfies

_xðtÞA�DxðtÞþAK½f ðxðtÞÞ�þBK½gðyðt�τðtÞÞÞ�þ J; for a:a: tA ½0; TÞ:
ð5Þ

Or equivalently,
ðiiÞ0 there exist two measurable functions α¼ ðα1;α2;…;αnÞT ;

β¼ ðβ1;β2;…;βnÞT : ½�τ; TÞ-Rn, such that αðtÞAK½f ðxðtÞÞ�;βðtÞAK
½gðxðtÞÞ� for a.a. tA ½�τ; TÞ and
_xðtÞ ¼ �DxðtÞþAαðtÞþBβðt�τðtÞÞþ J; for a:a: tA ½0; TÞ: ð6Þ
Definition 3 ((IVP), Forti et al. [23]). For any continuous function
υ : ½�τ;0�-Rn and any measurable selections χðsÞAK½f ðυðsÞÞ�;ωðsÞ
AK½gðυðsÞÞ� for a.a. sA ½�τ;0� by an initial value problem associated
to (1) with initial condition ðυ; χ;ωÞ, we mean the following pro-
blem: find a couple of functions ½x;α;β� : ½�τ; TÞ-Rn � Rn � Rn,
such that x is a solution of (1) on ½�τ; TÞ for some T40, α, β are
the outputs associated to x, and

_xðtÞ ¼ �DxðtÞþAαðtÞþBβðt�τðtÞÞþ J; for a:a: tA ½0; TÞ
αðtÞ A K½f ðxðtÞÞ�;βðtÞAK½gðxðtÞÞ�; for a:a: tA ½0; TÞ
xðsÞ ¼ υðsÞ; 8sA ½�τ;0�;
αðsÞ ¼ χðsÞ; βðsÞ ¼ωðsÞ; for a:a: sA ½0; TÞ:

8>>>><
>>>>:

ð7Þ
Lemma 1 (Liu et al. [25]). Suppose that the assumptions (A1) and
(A2) are satisfied, then there exists at least one solution of system (1)
defined on ½0; þ1Þ in the sense of Eqs. (7).

Consider system (1) as the drive system, then the controlled
response system is

_yðtÞ ¼ �DyðtÞþAf ðyðtÞÞþBgðyðt�τðtÞÞÞþ JþuðtÞ; ð8Þ
where yðtÞ ¼ ðy1ðtÞ; y2ðtÞ;…; ynðtÞÞT ARn is the state variable of system
(8), u(t) is the controller to be designed, the other parameters are the
same as in system (1).

In view of Definition 3 and Lemma 1, the IVP of system (8) is

_yðtÞ ¼ �DyðtÞþAηðtÞþBθðt�τðtÞÞþ JþuðtÞ; for a:a: tA ½0; TÞ
ηðtÞ A K½f ðyðtÞÞ�; θðtÞAK½gðyðtÞÞ�; for a:a: tA ½0; TÞ
yðsÞ ¼ ϕðsÞ; 8sA ½�τ;0�;
ηðsÞ ¼ ϑðsÞ; θðsÞ ¼ ςðsÞ; for a:a: sA ½0; TÞ:

8>>>><
>>>>:

ð9Þ
Define the synchronization error as eðtÞ ¼ ðe1ðtÞ; e2ðtÞ;…;

enðtÞÞT ¼ yðtÞ�xðtÞ, then from (7) and (9), we can obtain the fol-
lowing synchronization error system:

_eðtÞ ¼ �DeðtÞþAπðtÞþBϖðt�τðtÞÞþuðtÞ; ð10Þ
where πðtÞ ¼ ηðtÞ�αðtÞ;ϖðt�τðtÞÞ ¼ θðt�τðtÞÞ�βðt�τðtÞÞ, uðtÞ ¼
ðu1ðtÞ;u2ðtÞ;…;unðtÞÞT is the control input that will be designed
latter.
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