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This paper is concerned with the synchronization problem for a class of delayed chaotic neural networks
with discontinuous activations. First a lemma which concerns stability in general decay rate is con-
structed. Based on this lemma, the general decay synchronization stability criteria of discontinuous
neural networks are derived via a designed controller. The general decay synchronization is obtained by
introducing a decay function and it contains exponential synchronization and polynomial synchroni-
zation as its two special cases. Finally, two examples are given to verify the effectiveness of the obtained
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1. Introduction

Since Pecora and Carroll firstly introduced chaos synchronization
in 1990 [1], chaos synchronization has been extensively studied due
to its potential applications such as secure communication, infor-
mation processing, and biological systems [2-7]. It is shown that
delayed neural networks can exhibit chaotic behavior provided that
the parameters and delays are appropriately chosen [8]. Therefore,
synchronization and chaotic control of neural networks has been
one of the hot research topics in the past decades. Moreover, lots of
synchronization results have been obtained under different control
approaches, such as feedback control [9-13], adaptive control
[14-17], impulsive control [18], sampled-date control [19], inter-
mittent control [20], and finite-time control [21].

It is worth noting that the activations of neural networks model in
these papers are assumed to be continuous. A recent paper [22] has
pointed out the interest for studying global convergence of general
neural networks with discontinuous neuron activations. Dis-
continuous neuron activations are frequently encountered in the
practical applications, and the system of neural networks with dis-
continuous activations has been proved really useful as an ideal
model for the case where the gain of the neuron amplifiers is very
high [23]. So recently, dynamical behaviors including the stability
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and synchronization of delayed neural networks with discontinuous
activations have received a great deal of attention and have been
extensively studied in the literature [24-32]. In [25,26], quasi-
synchronization of discontinuous neural networks was investigated,
i.e. the synchronization error can only be controlled within a small
region around zero. It is also reported in [25] that complete syn-
chronization cannot be achieved between the identical drive and
response systems due to the discontinuity of activation functions.

In light of the above analysis, in this paper, we study the syn-
chronization problem for a class of delayed neural networks with
discontinuous activations. There are three advantages that make
our approach attractive. Firstly, differential inclusion, nonsmooth
analysis and control theory are employed to handle system with
discontinuous right-hand sides. Secondly, a new crucial lemma
which includes and extends the classical exponential stability
theorem is constructed. The new lemma provides a new result on
the stability in general decay rate by introducing a decay function.
Then synchronization in general decay rate for discontinuous
neural networks is obtained by using the lemma. Thirdly, the
complete synchronization in general decay rate studied in our
paper contains exponential synchronization and polynomial syn-
chronization as its two special cases.

The rest of this paper is organized as follows. The system and
some preliminaries are introduced in Section 2. In Section 3, by
constructing a new lemma, the general decay synchronization
criteria are established for discontinuous delayed neural networks
via a nonlinear controller. Then, numerical simulations are given to
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demonstrate the effectiveness of the obtained results in Section 4.
Finally, conclusions are drawn in Section 5.

Notations: Through this paper, R, denotes the set of all positive
real numbers, R" denotes the n-dimensional Euclidean space and
R™" denotes the set of all n x n real matrices. For any vector x € R",
its Euclidean norm is denoted as Il - I, i.e. Ixll =+/xTx. AT and A~!
stand for the transpose and the inverse of the matrix A, respec-
tively; A>0(A>0) means that the matrix A is symmetric and
positive definite (semi-positive definite); Amax(A) denotes the
maximum eigenvalue of matrix. ||All.o = max;{3> ;'_; |a;}, Al =
max;{>"}_ |ay|}. diag(-) denotes a block-diagonal matrix. I is the
identity matrix with appropriate dimension. sign(-) denotes the
signum function.

2. System description and preliminaries

In this paper, we consider a class of chaotic neural networks

with time-varying delay as follows:
x(t) = — Dx(t) +Af (x(t)) + Bg(x(t — z(1))) +J, ey
where x(t) = (x1(t), X2(t), ..., X2(t))T € R" is the state vector. D = diag
(dy,d>, ...,dy) is an n x n diagonal matrix with d; >0,i=1,2,...,n.
A= (j)yynB= (byj)p,cn e R™" are the connection weight matrix
and delayed connection weight matrix, respectively. f(x(t))=
F1X1(O), ... foa®)T e R" and  gx(t— (1)) = (g1 (X1 (E—T(D)), ...,
g,(xn(t—7(t))))" € R" are the neuron activation functions. z(t) is the
time-varying delay. J = (J;.J,,....J,)" is the external input vector.

Throughout this paper, the following assumptions are given for
system (1).

(A1) For every j=1,2,...,n,f;,gj : R>R are continuous except
on a countable set of isolate points {p{<}, where the finite right and
left limits ff (p{<), gjf @) and f;” (pi),gf (pi) exist, respectively.

(A2) For each j=1,2,...,n, there exist constants h;,k;,r;>
0,s; >0, such that

sup| & —¢jl <hjlu—v|+1;,
suplo;—vjl <kjlu—v|+s;, 2)

for all u,v e R, where & e K[f;(w)],{; e K[f;(v)], 0; € Klgj(w)],v; € Kg;
W)L K[f;()] = [min{f;” x).f;"
@)}, max{f;” (x),f;" 0}, Kig;y)] = [min{g;” ), g W)},
g]fr W} for x,y eR.

(A3) The time-varying delay 7(t) is bounded and there exist 7
> 0, > 0 such that

t<u<l, 3

maxig;” (),

0<t(t)<r,
for all t > 0.

Remark 1. It is worth noting that &;, ¢; may not be equal to {;,v;
even u=v if u is a discontinuous point. So the constants r;,s; in
assumption (A2) are necessary, which is the essential difference
between this paper and the previous literature where the Lipschitz
condition was used.

Since system (1) is a discontinuous system, its solution is dif-
ferent from the classic solution and cannot be defined in the
conventional sense. So we introduce the Filippov solution [34].
Definition 1 (Filippov [34]). For a system with discontinuous
right-hand sides:

dx
at = Fx),
A set-valued map is defined as

Px)= 1 K[FBXx6)\N),

8> 0u(N)=0

x(0)=xg, xeR", t>0. 4)

where K[E] is the closure of the convex hull of set E, EcR",

Bx,0)={y: lly—xl <d,x,yeR",6eR"}, and NcR", u(N) is the
Lebesgue measure of set N.

A solution (in Filippov's sense) of system (4) with initial con-
dition x(0)=xg € R" is an absolutely continuous function x(t),t e
[0, T], T > 0, which satisfy x(0) =xy and differential inclusion:

dx

at € 2@,

fora.a. te[0,T].
Now we extend the concept of the Filippov solution to the
discontinuous system (1) as follows:

Definition 2 (Forti et al. [23]). A function x:[-7,T)-»R".Te
(0, +00], is a solution (in Filippov's sense) of the discontinuous
system (1) on [—7,T), if:

(i) x is continuous on [—7,T) and absolutely continuous on
[0,T);

(ii) x(t) satisfies

X(t) e —Dx(t)+AK[f (x(t))]+BK[g(y(t —7(t)))]+], for a.a. te[0,T).

(5)
Or equivalently,
(i)’ there exist two measurable functions a = (a1, a3, ...,an)T,
B=B1.Byn ... )" : [—7.T)>R", such that a(t) e K[f(x(D)], B(t) e K
[gx(t))] for a.a. te[—7,T) and

X(t) = —Dx(t)+Aa(t)+Bp(t—(t))+], fora.a. te[0,T). (6)
Definition 3 ((IVP), Forti et al. [23]). For any continuous function
v :[—7,0]—R" and any measurable selections y(s) € K[f(v(s))], ©(s)
e K[g(v(s))] for a.a. s e [—7, 0] by an initial value problem associated
to (1) with initial condition (v, y, @), we mean the following pro-
blem: find a couple of functions [x,a,f]:[—7,T)—»R" x R" x R",
such that x is a solution of (1) on [—7,T) for some T >0, a, fj are
the outputs associated to x, and

X(t) = —Dx(t)+Aa(t)+Bp(t—z(t)+J, foraa. te[0,T)
aty e K[fx®), P eKgx®)), foraa.te[0,T)

X(s) = wo(s), Vse[-1,0]

ais)y = y(s), PE)=w(s), foraa. se[0,T).

(7)
Lemma 1 (Liu et al. [25]). Suppose that the assumptions (A1) and
(A2) are satisfied, then there exists at least one solution of system (1)
defined on [0, + o) in the sense of Egs. (7).
Consider system (1) as the drive system, then the controlled
response system is

y(®) = —Dy(O) +Af(y() +Bg(y(t — 7(t))) +J] +u(t), ®)

where y(t) = (y1(£),y5(), ...y, (D))" € R is the state variable of system
(8), u(t) is the controller to be designed, the other parameters are the
same as in system (1).

In view of Definition 3 and Lemma 1, the IVP of system (8) is

y(it) = —Dyt)+An(t)+BO(t—z(t))+]+u(t), fora.a. te[0,T)
ney e Kfym), 6@ eKgyt)), foraa.tel0,T)

y(s) = ¢(S)> Vse [_T> 0]’

nes)y = J¢), Os)=c¢(s), foraa. sel0,T).

®

Define the synchronization error as e(t)=(eq(t),ex(t),...,
ea(t)T =y(t)—x(t), then from (7) and (9), we can obtain the fol-
lowing synchronization error system:

é(t) = — De(t) +Am(t)+ Bw(t — 7(t)) + u(t), (10)

where 7(t) =n(t) — a(t), w(t —(t)) = Ot —7(t)) — p(t —7(t)), u(t)=
(U1(6), uz(0), ..., un(t))" is the control input that will be designed
latter.



Download English Version:

https://daneshyari.com/en/article/405973

Download Persian Version:

https://daneshyari.com/article/405973

Daneshyari.com


https://daneshyari.com/en/article/405973
https://daneshyari.com/article/405973
https://daneshyari.com

