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This paper investigates the problem of second-order impulsive consensus for multi-agent systems where
each agent can be modeled as an identical nonlinear oscillator. Several fundamental consensus criteria
are delivered based on algebraic graph theory and stability theory of impulsive differential equations by
designing the suitable impulsive control protocols. Sufficient conditions are given to guarantee the
consensus of the networked nonlinear oscillators. Finally, simulation results are presented to validate the
effectiveness of theoretical analysis.
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1. Introduction

A multi-agent system is always composed of many inter-
connected agents, in which agents represent individual elements
with their own dynamics and edges represent the relationships
between their dynamics. Multi-agent systems are ubiquitous in
the real world, such as electrical power grids, global economic
markets, social networks and so on [1-4]. During the past few
years, there have been increasing research activities in the field of
consensus analysis for the networked multi-agent systems (MAS)
due to its wide applications. The research on such problem not
only helps better understand the mechanisms of natural collective
phenomena, such as avoiding predators and increasing the chance
of foraging food, but also provides useful ideas to develop for-
mation control for coordination of multiple mobile autonomous
robots [6-9].

In the real world, many evolutionary processes may experience
abrupt changes of states at certain time instants. These changes
may be due to changes in the external environment disturbances
or the interconnections of subsystems. Moreover, these abrupt
changes may occur at prescribed moments and triggered by spe-
cified events along a particular trajectory. Then, to describe sys-
tematically on evolutionary of a real process with a short-time
disturbance, it is natural to omit the duration of the disturbance
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and just assume these perturbations to be instantaneous, that is,
in the pattern of impulses. The authors in 5,9-14,20] applied
impulsive control to enhance network synchronization and con-
sensus. In [19], the consensus problems for multi-agent networks
under directed communication graphs are discussed. The motions
of agents are described by impulsive differential equations, and
thus, consensus algorithms can be designed. In paper [21], the
problem of impulsive consensus of multi-agent systems is
investigated.

Owing to the engineering applications, second-order systems
where agents are governed by both position and velocity states
have received considerable interest [15-18,22-25,33,34]|. Unlike
the first-order system described in [15] which demonstrated
underlying network containing directed spanning tree, and the
authors did not guarantee second-order consensus. Some sig-
nificant conditions were further derived. In [16] proposed constant
velocity model. Subsequently, time-varying velocity and nonlinear
dynamics were considered in [17]. The authors in [18] found both
real and imaginary parts of eigenvalues of the corresponding
Laplacian matrix were closely relative to necessary and sufficient
conditions of second-order consensus in MADS. In this paper, the
problem of second-order impulsive consensus of multi-agent
systems is investigated where each agent can be modeled as an
identical nonlinear oscillator. Several fundamental consensus cri-
teria are obtained based on algebraic graph theory and stability
theory of impulsive differential equations by designing the sui-
table impulsive control protocols. The structure of this paper is
outlined as follows. Some basic preliminaries are introduced in
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Section 2, which are topology description and mathematical pre-
liminaries respectively. In Section 3, we formulate the second-
order impulsive consensus problem for networked nonlinear
oscillators and introduce an impulsive control protocol. Section 4
further investigates the second-order impulsive consensus of
multi-agent systems with fixed or switching topologies. Numerical
examples are given to demonstrate the effectiveness and the
correctness of theoretical results in Section 5. Finally, the con-
cluding remarks are also given in Section 6.

2. Preliminaries

In this section, some basic definitions in graph theory and
preliminary mathematical results are firstly introduced for
subsequent use.

The mathematical notations which will be employed in the rest
of the paper are presented as follows. Let R" denote the n-
dimensional real vector space. The Euclidean norms of a vector

x=(x1,...,xy)] and a matrix AeR™" are denoted by IxI &

VP x?and 1Al & / Amax(ATA), respectively, where A (ATA) is

the maximum eigenvalue of the matrix A.

2.1. Topology description

A directed graph R of order N consists of a vertex set V ={
1,2,...,N} and an ordered edge set {={(i,j):i,je V}. The set of
neighbors of vertex i is denoted by J;={jeV:(@ijel.j#i}. A
directed path is a sequence of ordered edges of the form (S; ,S;,),
(Si,»Si;), ..., where S; €V in a directed graph. A directed graph is
said to be strongly connected, if there is a directed path from every
node to every other node.

A weighted adjacency matrix A= [a;], where a; =0 and g;; <0,
i#j.a; >0 if and only if there is an ordered edge (ij) in 3. The in-
degree of vertex i is defined as follows deg;,(i) = Z}?z 1 Gji.

The out-degree of vertex is deg,, (i) = Z}\’:] a;.The vertex i is
said to be balanced if and only if its in-degree and out-degree are
equal, i.e. deg;, (i) = deg,,, (). Let g be the diagonal matrix with the
out-degree of each vertex along the diagonal and call it the degree
matrix of 3. The Laplacian matrix of the weighted graph is defined
as Ls = gop—A. An important property of L is that the row sums of L
are zero and thus 17 =(1,1,...,1)T eR" is an eigenvector of L
associated with zero eigenvalue. The graph is said to be balance if
and only if every vertexes in-degree and out-degree are equal. i.e.
1= >j_qa3 i=1,2,..,N. If the graph is balance, then
1L=0.

2.2. Mathematical preliminaries

Given C = [c;] e RV, it is said that C >0 (C is nonnegative) if
all its elements c; are nonnegative, and it is said that C>0 (C is
positive) if its entire element c; are positive. Further, C>D if
C-D=>0, and C> D if C—D>0. If a nonnegative matrix C e R™"
satisfies C1 =1, then it is said to be stochastic. A square matrix
CeR™™ is said to be doubly stochastic if both C and CT are
stochastic.

Let L be the graph Laplacian of the network. We refer to P=1
—wL with parameter.

Lemma 1 (Olfati-saber et al. [26]). Let ¢ be a directed graph with n
nodes and maximum degree d = max; (Zj#ia,-j). Then the perron

matrix P with parameter we(0,1/d] satisfies the following
properties:

1. P is a row stochastic nonnegative matrix with a trivial eigenvalue
of 1.

2. All eigenvalues of P are in a unit circle.

3. If ¢ is balanced graph, then P is a doubly stochastic matrix.

Lemma 2 (Horn and Johnson [27]). The Kronecker product of
matrices A and B is defined as

a;1B -+ ay,B
A®B= : ,

amB -+ apB

which satisfies the following properties:
L I Al=1A®II=I1AlI.

2.A+B) @ C=A® C+B®C

3. (A® B)(C ® D)= (AC) ® (BD).

3. Problem formulation

The general second-order consensus protocol is described by

xi()=vy(t)
vi(t) = u(t)
N N (1)
ui(t)=">_ a;(X(t)—xi(0) + > _ a (vi(t) —vi(D))
jeN; JjeN;

where x;(t) e R" and v;(t) e R" are position and velocity of the ith
agent respectively. A = [a;],, y i the adjacency matrix character-
izing the topology structure of the network, N; is the set of
neighbors of agent i.

Definition 1. The multi-agent system (1) is said to achieve second
order consensus, if for any initial conditions lim; _, . I1x;(t) — x;(t)Il =0,
limg_, o V() —vi(D) | =0, Vi, j=1,2,..,N.

As we can see, the second-order consensus can be reached if
the coupling strengths and spectra of Laplacian matrix satisfy
some suitable conditions. However, for the real world multi-agent
systems, the dynamics of velocity for each agent is often nonlinear.
Moreover, it is much more difficult to obtain the continuous
velocity information compared with the position information. To
deal with these difficulties, an impulsive control technique is
introduced, where each agent can update its position and velocity
at impulsive instants. Therefore the multi-agent system with
impulsive control signals is described by

xi(t) = v;(t)

Vi(t) = f(vi(D), ) + ()
+00 N + 00 N

uit)=">_ ht—tb > aj(xO—xi(®) + > ht—ti)ce Y a;(vi(t)—vi(t))
k=1 k=1

jeN; jeN;
)

where the discrete instants t, satisfy O<t,<t;<--<
e <tp <., and 1imk_,+xtk = + o0 with Tk =1lkyr1— 1l h(t) is the
Dirac delta function, i.e., h(t) =0 for t # 0, and ]f;f h(t)dt =1. The
Dirac delta function has the fundamental property that f;’f: h(t)o
(t—a)dt =h(a) for € #0 and all continuous compactly supported
functions h(t). In many applications, the Dirac delta function is
usually used to model a tall narrow spike function (an impulse).
breR, cyeR, ke N* are impulsive constants to be designed later.
Without loss of generality, we assume that x;(t), vi(t) are left
continuous at time ;. That is x;(t;) = x;(t; ) and v;(t) = vi(t; ).
Adopting a similar approach to that used in [28,29], form
(1) and (2) we have x;(ty+€&)—Xi(ty—€) = [* T E(f(x;(s),5))ds where

- Jty—¢
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