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a b s t r a c t

This paper is concerned with the problem of designing a non-fragile state estimator for a class of
uncertain discrete-time neural networks with time-delays. The norm-bounded parameter uncertainties
enter into all the system matrices, and the network output is of a general type that contains both linear
and nonlinear parts. The additive variation of the estimator gain is taken into account that reflects the
possible implementation error of the neuron state estimator. The aim of the addressed problem is to
design a state estimator such that the estimation performance is non-fragile against the gain variations
and also robust against the parameter uncertainties. Sufficient conditions are presented to guarantee the
existence of the desired non-fragile state estimators by using the Lyapunov stability theory and the
explicit expression of the desired estimators is given in terms of the solution to a linear matrix inequality.
Finally, a numerical example is given to demonstrate the effectiveness of the proposed design approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The past two decades have witnessed a surge of interest on both
theoretical investigations and algorithm developments of the recur-
rent neural networks (RNNs) due mainly to their remarkable ability
to exhibit dynamic temporal behavior in order to extract/detect/
approximate functional information from complicated or imprecise
data. So far, the RNNs have come to play a more and more important
role in a variety of application areas including pattern recognition,
image processing, optimization calculation and so on. On the other
hand, since early 90s, the time-delay has been recognized as a ubi-
quitous phenomenon that could cause undesired oscillations or even
instability in both biological and man-made neural networks [2]. As
an active research branch, the study on the dynamical behaviors of
RNN with time-delays has recently attracted an ever-increasing
interest from many communities including neural science, signal
processing and control engineering. Accordingly, in the past years, a
large number of results have been available in the literature on the

dynamics analysis issues (e.g. stability, synchronization and estima-
tion) for RNNs with various kinds of time-delays such as constant,
time-varying, discrete, distributed or mixed delays, see
[1,6,11,13,18,22,28] for some representative works. Very recently, in
[21], the passivity analysis problem has been investigated for a class
of switched neural networks subject to stochastic disturbances and
time-varying delays by using the average dwell-time approach. In
[33], the adaptive synchronization problem has been addressed for
memristor-based neural networks with time-varying delays by virtue
of the differential equation theory with discontinuous right-
hand sides.

In many practical applications, the actual values of the neural
states of a RNN are vitally important. For example, in optimization
problems, the RNNs can be implemented physically in designated
hardware such as application-specific integrated circuits where
the optimization is carried out in a truly parallel and distributed
manner. In this case, the neuron states are closely related to the
equilibria as well as the decision-making solutions. However,
because of the large scale of the RNN as well as the implementa-
tion cost, the neuron states are often not fully observable and only
the network outputs are available that contain partial information
about the network states. As such, accurate estimation of the
neuron states through measured outputs becomes an essential
prerequisite for successful accomplishment of certain tasks such as
approximation and optimization by using RNNs. In [34], the pro-
blem of state estimation has been first proposed for neural net-
works with time-varying delays. Since then, such a problem has
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received considerable research attention for both continuous- and
discrete-time neural networks, see e.g. [15,17,23,25,30,34,35].

As is well known, the parameter uncertainties are often una-
voidable in real systems due to modeling inaccuracies and/or
changes in the environment. In recent years, a great deal of effort
has been devoted to the robustness analysis for uncertain systems
[7,12,16,29]. Despite the rich body of literature on the state esti-
mation issues for RNN with parameter uncertainties, most results
obtained so far have been based on the assumption that the
desired state estimator can be realized precisely. Such an
assumption is, however, not necessarily true in certain engineering
practice. When implementing a state estimator digitally, the
implementation errors are often inevitable due probably to
analogue-to-digital conversion, rounding errors, finite precision or
internal noise. As discussed in [19], a small or even tiny drift/
fluctuation/error with the parameter implementation of the
designed controller/estimator could lead to unexpected fragility of
the closed-loop system as a whole. In other words, the parameters
of the actually implemented controller/estimator might have
slight deviations from their expected values, and therefore
designed controller/estimator should have certain degree of tol-
erance or non-fragility against the possible parameter deviations.
In the past decade, the problem of non-fragile control has gained
much attention with respect to the implementation errors in
controllers/estimators [24,27,32,36,37]. However, when it comes
to the discrete-time RNNs with time-delays, the non-fragile state
estimation problem has not been fully studied yet, not to mention
the case where the uncertainties also enter into other network
parameters. It is, therefore, the main purpose of this paper to
shorten such a gap.

Motivated by the above discussion, we aim to design a non-
fragile state estimator for a class of discrete-time neural networks
with parameter uncertainties. A sufficient condition for the
asymptotic stability of the error dynamics of the state estimation is
obtained and the gain matrix of the state estimator is derived by
solving a linear matrix inequality (LMI). A numerical example is
presented to demonstrate the effectiveness of the theoretical
results obtained. The main contribution of this paper lies mainly
on the problem addressed and the model proposed, which is
twofold as follows: (1) the non-fragile state estimation problem is
put forward for discrete time-delay neural networks in the pre-
sence of parameter uncertainties in all network parameters; and
(2) the network output is quite general that is subject to nonlinear
disturbances.

Notation: Throughout this paper, the superscript “T” represents
the matrix transposition. R denotes the set of real numbers; Rn

denotes the n-dimensional Euclidean space; Rn�m denotes the set
of all n�m real matrices. Nþ stands for the sets of positive
integers, I and 0 denote the identity matrix and zero matrix of
appropriate dimensions, respectively. We use X40 ðXo0Þ to
denote a positive-definite matrix (negative-definite matrix) X. j � j
is the Euclidean norm in Rn. If A is a matrix, λmin stands for the
smallest eigenvalue of A. The notation n always denotes the
symmetric block in a symmetric matrix, and diag f⋯g stands for a
block-diagonal matrix.

2. Problem formulation

In this paper, we consider a discrete-time neural network
described by the following dynamical equations:

xðkþ1Þ ¼ ðCþΔCÞxðkÞþðAþΔAÞf ðxðkÞÞþðBþΔBÞf ðxðk�dÞÞ
xðkÞ ¼ϕðkÞ; kA ½�d;0Þ

(
ð1Þ

where xðkÞ ¼ ½x1ðkÞ; x2ðkÞ;…; xnðkÞ�T ARn is the neural state vector;

f ðxðkÞÞ ¼ ½f 1ðx1ðkÞÞ; f 2ðx2ðkÞÞ;…; f nðxnðkÞÞ�T represents the nonlinear
activation function with the initial condition f ð0Þ ¼ 0; C ¼ diagf
c1; c2;…; cng is a positive diagonal matrix; A¼ ½aij�n�n, B¼ ½bij�n�n

are, respectively, the connection weight matrix and the delayed
connection weight matrix; dZ0 denotes the discrete time-delay;
ϕðkÞ describes the initial condition. In addition,ΔA,ΔB andΔC are
time-varying parameter uncertainties that satisfy

ΔA ΔB ΔC
� �¼M1F1ðkÞ N1 N2 N3½ � ð2Þ
where M1, N1, N2, N3 are known real-valued matrices with
appropriate dimensions and F1ðkÞ is an unknown matrix satisfying

FT1ðkÞF1ðkÞr I; 8kANþ ð3Þ
Throughout this paper, we make the following assumption.

Assumption 1. For any α1, α2 AR, α1aα2, the activation function
f ð�Þ satisfies

γ�
i r f iðα1Þ� f iðα2Þ

α1�α2
rγþ

i ; ði¼ 1;2;…;nÞ ð4Þ

where γ�
i and γþ

i are known constant scalars.

Remark 1. As shown in [22], the activation functions described in
(1) are more general than the usual sigmoid functions and the
commonly used Lipschitz conditions, where the constants γ�

i and
γþ
i are allowed to be positive, negative or zero. Therefore, such

activation functions could be nonmonotonic and would induce
less conservative results.

The outputs from the neural network (1) are of the following
form:

yðkÞ ¼DxðkÞþEgðk; xðkÞÞ ð5Þ
where yðkÞ ¼ ½y1ðkÞ; y2ðkÞ;…; ynðkÞ�T represents the measurement
output, D and E are known real-valued matrices with appropriate
dimensions, and gðk; xðkÞÞ is the neuron-dependent nonlinear
disturbance that satisfies the following Lipschitz condition:

jgðk;μ1Þ�gðk;μ2Þjr jGðμ1�μ2Þj ð6Þ
where G is a known constant matrix with appropriate dimension.

In order to estimate the state of the neural network (1) from
available measurement output (5), we construct the following
non-fragile state estimator:

x̂ðkþ1Þ ¼ Cx̂ðkÞþAf ðx̂ðkÞÞþBf ðx̂ðk�dÞÞþðKþΔKÞ yðkÞ�Dx̂ðkÞ�Egðk; x̂ðkÞÞ� �
x̂ðkÞ ¼ ϕ̂ðkÞ; kA ½�d;0Þ

(

ð7Þ
where x̂ðkÞARn is the state estimation, ϕ̂ðkÞ is the initial function
of x̂ðkÞ, and K is the estimator gain parameter to be determined.
ΔK quantifies the estimator gain variation in the following addi-
tive norm-bounded form:

ΔK ¼M2F2ðkÞN4 ð8Þ
where M2, N4 are known real-valued matrices with appropriate
dimensions and F2ðkÞ is an unknown matrix satisfying

FT2ðkÞF2ðkÞr I; 8kANþ ð9Þ
Letting the estimation error be eðkÞ ¼ xðkÞ� x̂ðkÞ, the dynamics

of the estimation error can be obtained from (1), (5) and (7) as
follows:

eðkþ1Þ ¼ ðC�KD�ΔKDÞeðkÞþΔCxðkÞþA~f ðeðkÞÞþΔAf ðxðkÞÞ
þB~f ðeðk�dÞÞþΔBf ðxðk�dÞÞ�ðKþΔKÞE ~gðeðkÞÞ ð10Þ

where

~f ðeðkÞÞ≔f ðxðkÞÞ� f ðx̂ðkÞÞ;
~f ðeðk�dÞÞ≔f ðxðk�dÞÞ� f ðx̂ðk�dÞ;
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