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a b s t r a c t

This paper investigates the problem of state estimation for uncertain Markovian jump neural networks
(NNs) with additive time-varying discrete delay components and distributed delay. By constructing a
novel Lyapunov–Krasovskii function with multiple integral terms and using an improved inequality,
several sufficient conditions are derived. Some improved conditions are formulated in terms of a set of
linear matrix inequalities (LMIs), under which the estimation error system is globally exponentially
stable in the mean square sense. Some numerical examples are provided to demonstrate the effective-
ness of the proposed results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, neural networks have been extensively
studied and have found application in a variety of areas, such as
signal processing, pattern recognition, and combinatorial optimiza-
tion. However, such applications heavily depend on the study of
dynamical analysis of neural networks in the presence of time delays
and parametric uncertainties [1–6,34,37]. In particular, time delays
may cause undesirable dynamic network behaviors such as oscilla-
tion and instability and the connection weights of neurons depend
on certain resistance and capacitance values that include uncertain-
ties, such as modeling errors. Therefore, the problem of stability of
delayed neural networks is importance in both theory and practice,
there have been many important and interesting results [7–16,35].

Hybrid systems driven by continuous-time Markov chain have
been used to model many practical systems, where they may
experience abrupt changes in their structure and parameters. When
the neural network incorporates abrupt changes in its structure, the
Markovian jump linear system is very appropriate to describe its
dynamics [17–23,36]. It is well known that the state estimation is
one of the foundational problems in dynamics analysis for complex
systems including recurrent neural networks, complex networks,
genetic regulatory networks as well as general engineering systems.
Over the past few decades, a lot of effective approaches have been

proposed in this research area [24–27]. In addition, due to the
modeling errors, parameter drifting, uncertainties occur so fre-
quently that may lead to instability and poor performance of the
neural networks. Parameter uncertainties have been mainly cate-
gorized as norm bounded uncertainties and interval uncertainties,
while the interval type can be usually transformed into the norm-
bounded type.For these two types of uncertainties, the state esti-
mation problem and stability analysis have been investigated in
[28,29,38] for neural networks. Stability and state estimation for
uncertain neural networks with time varying delays and Markovian
jump parameters have drawn considerable research attention. It is
worth mentioning that, although there are already many works to
deal with the problem of dynamic analysis to those neural net-
works, they are still conservative to some extent, for example, the
technique to deal with the cross products in most of those works
was Jensen inequality [30], it will lead to some conservativeness of
the achieved results, which leaves great room for further research.

In this paper, the problem of state estimation for uncertain
Markovian jump neural networks (NNs) with mixed delays is
investigated. By constructing a novel Lyapunov–Krasovskii func-
tional with multiple integral terms based on the idea of delay
partitioning, and using reciprocally convex approach and an
improved inequality, which provides more accurate upper bound
than Jensen inequality for dealing with the cross-term. The
improved stability criteria of the estimation error systems is
obtained in the form of linear matrix inequalities. In fact, the
system discussed in [31] is a special case of ours. Some numerical
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examples are provided to demonstrate the effectiveness of the
proposed results.

Notation: Throughout this paper, Rn denotes n-dimensional
Euclidean space and Rn�n is the set of all n� n real matrices. For
symmetric matrices X and Y, the notation X4Y ðXZYÞ means that
the matrix X�Y is positive definite (nonnegative). The superscripts
0T 0 and 0 �10 respectively stand for the transpose and inverse of a
matrix. The symmetric block in a symmetric matrix is denoted by n.

2. Preliminaries

Consider the following Markovian jump neural networks with
mixed delays:

_xðtÞ ¼ �Aðt; rtÞxðtÞþBðt; rtÞσðxðtÞÞþB1ðt; rtÞσðxðt�h1ðt; rtÞ

�h2ðt; rtÞÞÞþDðt; rtÞ
Z t

t�d
σðxðsÞÞdsþ JðrtÞ; ð1Þ

yðtÞ ¼ CðrtÞxðtÞþϕðt; xðtÞÞ; ð2Þ

Remark 2.1. In the past few decades, the time delay in singular
form in a state was paid more attention. However, in practical
situations especially networked controlled systems, signals some-
times transmitted from one point to another two segments of
networks [33]. Therefore, a system with two additive time varying
delay components should be considered.

To simplify the notations, for rt ¼ i. Aðt; rtÞ;Bðt; rtÞ;B1ðt; rtÞ;Dðt;
rtÞ; JðrtÞ;CðrtÞ;h1ðt; rtÞ and h2ðt; rtÞ are denoted by AiðtÞ;BiðtÞ;B1iðtÞ;
DiðtÞ; Ji;Ci;h1iðtÞ and h2iðtÞ, respectively. We denote hiðtÞ ¼ h1iðtÞþ
h2iðtÞ. For each rtAF , (1), and (2) can be rewritten to the following
form:

_xðtÞ ¼ �AiðtÞxðtÞþBiðtÞσðxðtÞÞþB1iðtÞσðxðt�hiðtÞÞÞ

þDiðtÞ
Z t

t�d
σðxðsÞÞdsþ Ji; ð3Þ

yðtÞ ¼ CixðtÞþϕðt; xðtÞÞ; ð4Þ
and

AiðtÞ ¼ AiþΔAiðtÞ; BiðtÞ ¼ BiþΔBiðtÞ;
B1iðtÞ ¼ B1iþΔB1iðtÞ; DiðtÞ ¼DiþΔDiðtÞ; ð5Þ
where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ;…; xnðtÞ�T ARn is the neuron state vector,
yðtÞARm is the network measurement. σðxð�ÞÞ ¼ ½σ1ðx1ð�ÞÞ;σ2ðx2ð�ÞÞ;
…;σnðxnð�ÞÞ�T ARn denotes the neuron activation function, and J ¼
ðJ1; J2;…; JnÞT ARn is a constant input vector, ϕðt; xðtÞÞ is a nonlinear
disturbance. AiARn�n is a positive diagonal matrix, Bi;B1i and Di

are the connection weight matrices with appropriate dimension, Ci
is a real known matrix, h1iðtÞ and h2iðtÞ are two mode-dependent
time-varying delay. ΔAiðtÞ;ΔBiðtÞ;ΔB1iðtÞ and ΔDiðtÞ time-varying
parameter uncertainties, which are assumed to be the form:

½ΔAiðtÞ; ΔBiðtÞ; ΔB1iðtÞ; ΔDiðtÞ� ¼HiFiðtÞ½E1i; E2i; E3i; E4i�; ð6Þ
where Hi; E1i; E2i; E3i and E4i are known real constant matrices, and
Fið�Þ are unknown time-varying matrix function satisfying

FTi ðtÞFiðtÞr I; ð7Þ
The transition probability matrix of system (1) is given by

PfrtþΔ ¼ jj rt ¼ ig ¼
πijΔþoðΔÞ if ðja iÞ
1þπiiΔþoðΔÞ if j¼ i

(
ð8Þ

where Δ40, limΔ-0þ oðΔÞ=Δ¼ 0, πijZ0, for ja i is the transition
rate from i mode at time t to j mode at time tþΔ , and for each
iAF , πii ¼ � PN

j ¼ 1;ja i πij. Let frtgtZ0 be a right-continuous Mar-
kov chain defined on a complete probability space ðΩ;F ; PÞ and

taking discrete values in a finite set F ¼ 1;2;…;N with generator
∏¼ ðπijÞN�N .

Assumption 2.1. Suppose that σð�Þ satisfies

½σðxÞ�σðyÞ�Σ1ðx�yÞ�T ½σðxÞ�σðyÞ�Σ2ðx�yÞ�r0; 8x; yARn

ð9Þ
where Σ1;Σ2ARn�n are known constant matrices.

Assumption 2.2. Suppose that ϕð�Þ satisfies

½ϕðt; xÞ�ϕðt; yÞ�Φ1ðx�yÞ�T ½ϕðt; xÞ�ϕðt; yÞ�Φ2ðx�yÞ�r0;

8x; yARn ð10Þ

where Φ1;Φ2ARm�n are known constant matrices.

Assumption 2.3. There exist scalars h1i, h1i, h2i, h2i, μ1i and μ2i

such that for rt ¼ iAF

0rh1irh1iðtÞrh1i; 0rh2irh2iðtÞrh2i;

_h1iðtÞrμ1i;
_h2iðtÞrμ2i; ð11Þ

For rt ¼ iAF , a proper state estimator is constructed as

x̂ðtÞ ¼ �AiðtÞx̂ðtÞþBiðtÞσðx̂ðtÞÞþB1iðtÞσðx̂ðt�hiðtÞÞÞ

þDiðtÞ
Z t

t�d
σðx̂ðsÞÞdsþ JiþKi½yðtÞ�CiðtÞx̂ðtÞ�ϕðt; x̂ðtÞÞ�; ð12Þ

where x̂ðtÞ is an estimation of the state x(t), and Kiði¼ 1;2;…;NÞ, to
be determined, are the gain matrices. Define the error signal to be
eðtÞ ¼ xðtÞ� x̂ðtÞ. Then the estimation error system can be imme-
diately obtained from (3), (4) and (12):

_eðtÞ ¼ �ðAiðtÞþKiCiÞeðtÞþBiðtÞf ðeðtÞÞþB1iðtÞf ðeðt�hiðtÞÞÞ

þDiðtÞ
Z t

t�d
f ðeðsÞÞds�KigðeðtÞÞ; ð13Þ

Here, it is simply written σðxðtÞÞ�σðx̂ðtÞÞ as f ðeðtÞÞ and ϕðt; xðtÞÞ�
ϕðt; x̂ðtÞÞ as gðeðtÞÞ without any confusion. In addition, it follows
from Assumptions 2.1 and 2.2 that

½f ðeðtÞÞ�Σ1eðtÞ�T ½f ðeðtÞÞ�Σ2eðtÞ�r0;

½gðeðtÞÞ�Φ1eðtÞ�T ½gðeðtÞÞ�Φ2eðtÞ�r0; ð14Þ

Lemma 2.1 (Seuret and Gouaisbaut [32]). For a given matrix R40,
hmrhðtÞrhM, and any appropriate dimension matrix X, which
satisfies

R X
n R

" #
Z0;

Then, the following inequality holds for all continuously differentiable
function e(t):

�
Z t�hm

t�hM

_eT ðsÞR _eðsÞdsr� 1
hM�hm

αT ðtÞ R X

n R

" #
αðtÞ;

αðtÞ ¼ ½αT
1ðtÞ;αT

2ðtÞ;αT
3ðtÞ;αT

4ðtÞ�T ;
α1ðtÞ ¼ eðt�hðtÞÞ�eðt�hMÞ;

α2ðtÞ ¼ eðt�hðtÞÞþeðt�hMÞ�
2

hM�hðtÞ
Z t�hðtÞ

t�hM
eðsÞds;

α3ðtÞ ¼ eðt�hmÞ�eðt�hðtÞÞ;

α4ðtÞ ¼ eðt�hmÞþeðt�hðtÞÞ� 2
hðtÞ�hm

Z t�hm

t�hðtÞ
eðsÞds;
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