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a b s t r a c t

In this paper, we give a detailed Hopf bifurcation analysis of a recurrent neural network system involving
both discrete and distributed delays. Choosing the sum of the discrete delay terms as a bifurcation
parameter the existence of Hopf bifurcation is demonstrated. In particular, the formulae determining the
direction of the bifurcations and the stability of the bifurcating periodic solutions are studied by using
the normal form theory and center manifold theorem. Finally, numerical simulations supporting our
theoretical results are also included.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, research of recurrent neural networks (RNNs) (espe-
cially Hopfield neural networks) has attracted the attention of
great number of investigators [8,10,13,20,22,31,32,33]. Major
contributions to the theory and design of neural networks dates
back to the 1980s [13]. Hopfield [14] has been a pioneer study in
recurrent networks with symmetric synaptic connections using
energy function. Based on the Hopfield network model, Babcock
and Westervelt [2] have studied the dynamics of simple electronic
neural networks and analyzed two neurons with discrete time
delays. Marcus and Westervelt [18] have considered the stability of
analog neural networks with delayed response and showed that
continuous time analog networks can exhibit sustained oscillation
when time delay is included. Afterwards, the dynamic properties
of neural networks have been studied very much in the literature
[3,7,13,21,23,29].

RNNs which generate stable oscillations have been used to
model certain biological phenomena (see [28] and the references

therein). Physiological experiments suggest that brain has chaotic
structure. If this chaotic behaviour changes, as in Alzheimer dis-
ease, the brain could be slower on rapid state transitions essential
for information processing [9]. For epilepsy disease, it has been
assumed that the stabilization of unstable patterns in the healthy
chaotic brain dynamics is the cause of the increased rhythmicity
observed in EEG recordings at the onset of epileptic seizures. In
this sense, neural networks are important for controlling chaotic
dynamical systems. If RNNs have periodic orbits, then such peri-
odic orbits are meant to capture the idea that certain activities or
motions are learned by repetition [28].

It is known that time delay may affect dynamical behaviors of
neural networks [1,27]. The delayed axonal signal transmissions in
neural networks make the dynamic behaviors more complicated
and may destabilize stable equilibria, and give rise to periodic
oscillation, bifurcation and chaos [10]. Therefore, stability analysis
of neural networks with constant or time-varying delays has been
an attractive subject of research. Although delay differential
equations present richer dynamics than simple low dimensional
differential equations, qualitative analysis of delay differential
equations is much more complex [4,5,15].

Bifurcation is one of the most important dynamical phenomena
for the nonlinear neural systems [26]. Changing control parameter
may cause instability, losing equilibrium points or occurring per-
iodic solutions. It is determined locally whether a system has
periodic solutions via Hopf bifurcation theory. In bifurcation
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theory literature, choosing the bifurcation parameter as delay
parameter is common to see the effect of delay term.

Neural networks with delays have very rich and complex
dynamics. There are some other methods to investigate limit
cycles or periodic orbits in RNNs [28]. Using Hopf bifurcation
theorem is one of the widespread techniques. Since determination
of the roots of the characteristic polynomial corresponding to
linearized system and then applying normal form theory are
rather arduous, researchers have paid attention to study the
dynamics of small-scale neurons rather than large-scale networks
to understand these complicated structures.

As pointed out by Ruan and Filfil [21], neural networks usually
have a spatial extent due to the presence of a multitude of parallel
pathways with a variety of axon sizes and lengths. Hence, there
will be a distribution of conduction velocities along these path-
ways and a distribution of propagation delays. In these circum-
stances the signal propagation is not instantaneous and cannot be
modeled with discrete delays. Therefore, a more appropriate way
is to incorporate continuously distributed delays in finite or/and
infinite time. Also, in some cases, the entire history affects the
current state, so considering infinite time delay is more general
[16,24,30]. Moreover, a distributed delay becomes a discrete delay
when the delay kernel is a Dirac delta function at a certain time.
We refer to [6,10,17,21,34] and the references therein for related
work on networks with distributed delays.

Olien and Bélair [19] investigated the stability of a two-neuron
system with discrete time delays, that is,

u0
1ðtÞ ¼ �u1ðtÞþa11f ðu1ðt�τ1ÞÞþa12f ðu2ðt�τ2ÞÞ;

u0
2ðtÞ ¼ �u2ðtÞþa21f ðu1ðt�τ1ÞÞþa22f ðu2ðt�τ2ÞÞ: ð1Þ

They studied several cases, including τ1 ¼ τ2, a11 ¼ a22. They found
that system (1) may undergo Hopf bifurcations at certain values of
delay. Following this work, properties of two-neuron networks
with delays have been studied intensively [6,11,21,23,29,32,34]. In
the case of multiple delays, the dynamics of systems could be
more complex and interesting since the characteristic equation is
transcendental. Recently, Li and Hu [17] studied the following
differential equations with multiple delays:

x01ðtÞ ¼ �x1ðtÞþa11f
Z t

�1
Fðt�sÞx1ðsÞ ds

� �
þa12f ðx2ðt�τÞÞ;

x02ðtÞ ¼ �x2ðtÞþa21f ðx1ðt�τÞÞþa22f
Z t

�1
Fðt�sÞx2ðsÞ ds

� �
: ð2Þ

First, they investigated the stability of the zero equilibrium using
Routh–Hurwitz criterion when delay term τ¼ 0. And then taking
discrete delay τ as bifurcation parameter, they showed the exis-
tence of local Hopf bifurcation using Hopf bifurcation theorem
conditions.

In this paper, extending the idea above, we take discrete delays
between neurons that appears in Eq. (2) differently and consider
the following general two-neuron network with discrete and
distributed delays, that is,

x01ðtÞ ¼ �x1ðtÞþa11f 11

Z t

�1
Fðt�sÞx1ðsÞ ds

� �
þa12f 12ðx2ðt�τ2ÞÞ;

x02ðtÞ ¼ �x2ðtÞþa21f 21ðx1ðt�τ1ÞÞþa22f 22

Z t

�1
Fðt�sÞx2ðsÞ ds

� �
;

ð3Þ
where x0iðtÞ ¼ dxi=dt, xi(t) represents the state of the ith neuron at
time t and aij (i¼1,2 and j¼1,2) are real constants. Here, Fð:Þ is
nonnegative bounded delay kernel defined on ½0;1Þ which
reflects the influence of the past states on the current dynamics.
System (3) is reduced to system (2) if f ij ¼ f , i¼1,2 and j¼1,2 and
τ1 ¼ τ2. Similarly, it is reduced to system (1) when the delay kernel
is taken as Dirac delta function and f ij ¼ tanh (see [17]). The

architecture of system (3) is illustrated in Fig. 1. One should
underline that system (3) can maintain a periodic orbit such that
these periodic orbits present periodic pattern and have been used
in learning theory, which are meant to capture the idea that cer-
tain activities or motions are learned by repetition [28].

Our aim in this paper is to give a detailed Hopf bifurcation
analysis of Eq. (3) with second distributed delay is omitted as the
first case. A complete Hopf bifurcation analysis of Eq. (3) will be
studied in a separate paper later since the dimension of the system
is getting higher and characteristic equation is more complex.
Choosing τ¼ τ1þτ2 as a bifurcation parameter we study the sta-
bility of the zero solution and investigate the local Hopf bifurca-
tion properties.

This paper is organized as follows. In Section 2, stability of the
equilibrium and the existence of Hopf bifurcation are investigated.
In Section 3, the direction of Hopf bifurcation and the stability and
period of bifurcating periodic solutions on the center manifold are
determined. Finally, in Section 4, we consider an example and
simulate it using MATLAB to support our theoretical results.

2. Stability analysis and Hopf bifurcation

As we mentioned it in Introduction, we first study a simplified
version of Eq. (3) in this paper. This model that we consider has
the following form:

x01ðtÞ ¼ �x1ðtÞþa11f 11

Z t

�1
Fðt�sÞx1ðsÞ ds

� �
þa12f 12ðx2ðt�τ2ÞÞ

x02ðtÞ ¼ �x2ðtÞþa21f 21ðx1ðt�τ1ÞÞþa22f 22ðx2ðtÞÞ: ð4Þ
In order not to affect the equilibrium values, we normalize the
kernel such that

R1
0 FðsÞ ds¼ 1. In this paper, we consider only the

weak kernel, that is,

FðsÞ ¼ αe�αs; α40;

where α reflects the mean delay of the weak kernel. Now, it is
necessary to make the following assumptions:

(H1) f ijAC3; f ijð0Þ ¼ 0; ði¼ 1;2 and j¼ 1;2Þ,
(H2) τ¼ τ1þτ2.

For convenience, we define a new variable as follows:

x3ðtÞ ¼
Z t

�1
Fðt�sÞx1ðsÞ ds:

Then by the linear chain trick technique, system (4) can be
transformed into the following system:

x01ðtÞ ¼ �x1ðtÞþa11f 11ðx3ðtÞÞþa12f 12ðx2ðt�τ2ÞÞ;
x02ðtÞ ¼ �x2ðtÞþa21f 21ðx1ðt�τ1ÞÞþa22f 22ðx2ðtÞÞ;
x03ðtÞ ¼ �αx3ðtÞþαx1ðtÞ: ð5Þ
By the hypothesis (H1), it is easy to see that the origin ð0;0;0Þ is an
equilibrium point of system (5). Letting u1ðtÞ ¼ x1ðt�τ1Þ,

Fig. 1. Architecture of the model (3). Two neurons send signals to each other with a
discrete delay, τj, j¼1,2. One element receives one delayed input from itself with
distributed delay, that has been shown with dashed line.

E. Karaoğlu et al. / Neurocomputing 182 (2016) 102–110 103



Download English Version:

https://daneshyari.com/en/article/405999

Download Persian Version:

https://daneshyari.com/article/405999

Daneshyari.com

https://daneshyari.com/en/article/405999
https://daneshyari.com/article/405999
https://daneshyari.com

