
Constructive algorithm for fully connected cascade feedforward
neural networks

Junfei Qiao a,c,n, Fanjun Li a,b,c, Honggui Han a,c, Wenjing Li a,c

a College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
b School of Mathematical Science, University of Jinan, Shandong 250022, China
c Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China

a r t i c l e i n f o

Article history:
Received 16 May 2014
Received in revised form
28 October 2015
Accepted 8 December 2015
Communicated by M.T. Manry
Available online 17 December 2015

Keywords:
Constructive algorithm
Feedforward neural network
Cascade correlation network
Convergence
Orthogonal least squares

a b s t r a c t

In this paper, a novel constructive algorithm, named fast cascade neural network (FCNN), is proposed to
design the fully connected cascade feedforward neural network (FCCFNN). First, a modified index, based
on the orthogonal least square method, is derived to select new hidden units from candidate pools. Each
hidden unit leads to the maximal reduction of the sum of squared errors. Secondly, the input weights and
biases of hidden units are randomly generated and remain unchanged during the learning process. The
weights, which connect the input and hidden units with the output units, are calculated after all
necessary units have been added. Thirdly, the convergence of FCNN is guaranteed in theory. Finally, the
performance of FCNN is evaluated on some artificial and real-world benchmark problems. Simulation
results show that the proposed FCNN algorithm has better generalization performance and faster
learning speed than some existing algorithms.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Feedforward neural networks (FNNs) have been extensively
used in many practical areas, such as controlling, modeling, image
processing and so on [1–4]. The performance of FNNs is greatly
dependent on their architectures [5]. Due to its structural flex-
ibility, effective training algorithms and universal approximation
ability, the architecture of multilayer perceptron (MLP) has been
widely used during the past several decades [1–3,5,6]. While,
recent research results have shown that the fully connected cas-
cade feedforward neural network (FCCFNN) is more powerful than
both MLP and bridged multilayer perceptron (BMLP) in most cases
[7,8]. Unfortunately, it is difficult for FCCFNNs to decide the
architectures and the training algorithms which are used to tune
their weights and biases. Therefore, this paper will focus on con-
structing and training the FCCFNNs to get fast learning speed and
good generalization performance.

The cascade correlation (CC) algorithm [9], one of the most
popular constructive algorithms, can be used to construct a special
FCCFNN, called cascade correlation network (CCN) [10–12]. The CC
algorithm is simple and fast, since only the new hidden unit (a
candidate unit) is trained before being added to the existent

networks, and the input weights of the hidden units are frozen in
the later process. Moreover, the CC algorithm determines the
CCN's size, topology and weights simultaneously [13]. However,
the weights connected to the output units are trained repeatedly
after each new hidden unit is added, which usually causes heavy
computation. In addition, the objective function used to train the
new hidden units can not guarantee a maximal error reduction
when a new hidden unit is added, which may lead to a large
network with poor generalization performance. To solve these
problems, orthogonal least squares based cascade network
(OLSCN) algorithm was proposed [14]. Based on the orthogonal
least squares (OLS) method, the OLSCN algorithm derives a new
objective function to train the new hidden units. The weights
connected with the output unit are updated after all necessary
hidden units are added. However, when the candidate unit is
linearly dependent with the existing hidden units, the new
objective function may make mistakes. In addition, the linearly
independence of the input vectors is necessary for the QR factor-
ization [15], while the OLSCN algorithm can not guaranteed it.
Especially, the OLSCN algorithm updates the weights of candidate
hidden units by a modified Newton's method with gradient vector
and Hessian matrix, which may result in local minimum, slow
convergence and heavy calculation for larger networks.

Some gradient-based algorithms for training FCCFNNs have
already been developed, such as error back propagation (EBP),
Levenberg–Marquardt (LM) and neuron-by-neuron (NBN) algo-
rithms [16–18]. Although all of them have succeeded in many

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.12.003
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author at: College of Electronic Information and Control Engi-
neering, Beijing University of Technology, Beijing 100124, China.

E-mail address: isibox@sina.com (J. Qiao).

Neurocomputing 182 (2016) 154–164

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.12.003
http://dx.doi.org/10.1016/j.neucom.2015.12.003
http://dx.doi.org/10.1016/j.neucom.2015.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.003&domain=pdf
mailto:isibox@sina.com
http://dx.doi.org/10.1016/j.neucom.2015.12.003


cases, they still have some connatural defects such as poor con-
vergence and local minimum. To solve these problems, the train-
ing algorithms based on random hidden units have been proposed
to train feedforward neural networks, such as the random vector
version of the functional-link (RVFL) net [19,20], the extreme
learning machine (ELM) for single-hidden layer feedforward
neural network (SLFN) [21,22] and the No-Prop algorithm for
multilayer neural networks [23]. These algorithms randomly
choose the input weights of hidden units and analytically deter-
mine the output weights by simple linear regression. In this paper,
the algorithms with random hidden units are described as random
mapping (RM) algorithms. The RM algorithms have many advan-
tages over traditional gradient-based learning algorithms, such as
extremely fast learning speed, favorable generalization perfor-
mance and simple codes. They have been applied to various pro-
blems [24–26]. However, there are few homologous algorithms to
construct or train the FCCFNNs.

In this work, a novel constructive algorithm named faster cas-
cade neural network (FCNN) is proposed to construct and train
FCCFNNs automatically. The aim is to improve the generalization
performance of CCN and OLSCN with fast learning speed. As shown
in Fig. 1, the FCNN begins with an empty network without input
and hidden units. The modified index is derived by the OLS method
to select the new hidden units from the candidate pools. The can-
didate hidden units for FCNN are generated randomly inspired by
RM algorithm, which means that the input weights and biases of
candidate hidden units are chosen randomly according to some
probability distribution and remain unchanged. The process of
FCNN algorithm can be split into three parts. First of all, the linearly
independent variable is selected by Gram–Schmidt orthogonaliza-
tion method and added to the network one by one. Then, the

candidate unit which causes the maximal reduction of the sum of
squared errors is added to the existent network. After all the
necessary hidden units have been added, the FCCFNN can be simply
considered as a linear system, and the output weights are analyti-
cally determined by back substitution method. In a word, the pro-
posed FCNN algorithm has several contributions as follows.

(1) A modified index is proposed, based on the OLS, to select new
hidden units with maximal error reductions from
candidate pools.

(2) A simple training method for weights is integrated into the
proposed algorithm. No weights need to be tuned until all
necessary hidden units are added. Only the output weights are
calculated by back substitution while the others retain
constant.

(3) A novel algorithm is proposed to automatically construct train
FCCFNNs with fast learning speed and good generalization
performance. Moreover, the convergence of the proposed
FCNN algorithm is guaranteed in theory.

This paper is organized into six sections. Section 2 briefly intro-
duces the preliminary (architecture, modified index and method to
train the weights) for FCNN. The steps and convergence of the pro-
posed FCNN algorithm are described in Section 3. Section 4 presents
the experiment results that show the superior performance of FCNN
compared with the original CCN and OLSCN algorithms. Some dis-
cussions about the generalization performance of FCNN are given in
Section 5. Finally, Section 6 summarizes the main conclusions.

2. Preliminary

2.1. Architecture of FCNN and its mathematical expression

The architecture of FCNN is similar to that of FCCFNN and CCN.
As shown in Fig. 1, all hidden units connect with each other and
connections can be across all the layers. The difference is that the
architecture of FCNN begin with an empty network without input
and hidden units, which means that the input units and hidden
units are added to the network one by one, while FCCFNN is a
network with fixed topology. It can be seen from Fig. 1 that, dif-
ferent from the architecture of MLP and BMLP, each hidden unit in
FCNN forms one layer, which receives connections from the net-
work's original inputs and the pre-existing hidden units as well.
Meanwhile, every original input as well as the output of each
added hidden unit is connected to every output unit by a con-
nection. Also, there is a bias input connected with all hidden units
and output units, which is permanently set to þ1. In the next
section, we will present the architecture of FCNN by its mathe-
matical expression.

Consider N arbitrary distinct samples ðxi; tiÞ xiARn; tiARm;
���

1r irNg, where xi ¼ xi1 xi2 ⋯ xin
� �T, tiAðti1; ti2; ⋯; timÞT.

For simplifying formulation, we number the bias unit, input units
and hidden units in sequence as done in [14], i.e., the ith unit
defined as follows,

the ith unit¼
bias unit i¼ 1
the ði�1Þth input unit 2r irnþ1
the ði�n�1Þth hidden unit nþ1o irL

:

8><
>: ð1Þ

The input weights of the kth unit are wlk j l¼ 1;2;⋯; k�1
� �

where w1k is the bias of the kth unit and k4nþ1. With the above
definitions, the outputs of bias unit, input units and hidden units

1y my

1

Add input units one by one

1y my

2

n+1

1x

nx

1

1y my

Add random hidden units one by one

2

n+1

1x

nx

1

n+2

L

+1

+1

+1

Fig. 1. The architecture of FCNN.

J. Qiao et al. / Neurocomputing 182 (2016) 154–164 155



Download English Version:

https://daneshyari.com/en/article/406004

Download Persian Version:

https://daneshyari.com/article/406004

Daneshyari.com

https://daneshyari.com/en/article/406004
https://daneshyari.com/article/406004
https://daneshyari.com

