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a b s t r a c t

This paper studies the passivity of a general array model of coupled reaction–diffusion neural networks
(CRDNNs) with switching topology and time-varying delay. By exploiting the Lyapunov functional
method and some inequality techniques, several sufficient criteria are established to ensure the input
strict passivity and output strict passivity of the proposed network model. Moreover, we reveal the
relationship between passivity and stability of CRDNNs. Based on the obtained passivity results and
relationship between passivity and stability, a synchronization criterion is presented for CRDNNs. Finally,
two numerical examples are provided to demonstrate the correctness and effectiveness of the theoretical
results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Various systems in nature and society, such as communication
networks, social networks, collaborative networks, power grids,
cellular networks, World Wide Web, metabolic systems, epidemic
spreading networks, can be modeled as complex networks.
Therefore, complex networks have long been regarded as a fun-
damental tool to understand dynamical behavior and the response
of real system, and the analysis and control of dynamical behaviors
in complex networks have received much attention in recent years
[1–3].

As a special class of complex networks, coupled neural net-
works (CNNs) have found widely applications in many fields, such
as pattern recognition, image processing, and optimization pro-
blems [4–9]. It is well known that these practical applications are
heavily dependent on the dynamical behaviors of CNNs. In recent
years, the analysis and control of dynamical behaviors in CNNs
have become a hot topic. Liang et al. [10] investigated the robust
synchronization of CNNs with stochastic discrete-time delay. In
[11], the authors studied the synchronization problem of linearly
coupled delayed neural network, in which the activation function
is discontinuous and the coupling configuration matrix is not
limited to symmetry or irreducibility. By constructing proper state
feedback controller and adaptive controller, several criteria for

synchronization were established. Yang and Cao [12] discussed the
global chaotic synchronization of general coupled neural net-
works. Several sufficient conditions were developed to guarantee
global synchronization by utilizing adaptive pinning feedback
control schemes. Unfortunately, diffusion effects have not been
taken into consideration in these existing works [10–12]. Strictly
speaking, the diffusion phenomena could not be ignored in neural
networks and electric circuits once electrons transport in a non-
uniform electromagnetic field. However, very few researchers
have investigated the CNNs with reaction–diffusion terms [13–17].
Wang et al. [13] studied the synchronization of CNNs with reac-
tion–diffusion, and established several criteria for synchronization
by utilizing adaptive feedback control technique. In [16], the
authors investigated global exponential synchronization in an
array of linearly diffusively coupled reaction–diffusion neural
networks (CRDNNs) with time-varying delays by adding impulsive
controller to a small fraction of nodes.

But in these existing works on CRDNNs [13–17], they always
assume the topology structure is fixed. Practically, this assumption
is very restrictive and only covers a few ideal situations. In many
real-world networks, the connection topology may change very
quickly by switches [18,19]. Therefore, it is very interesting to
further investigate CRDNNs with switching topology.

Passivity is part of a broader and a general theory of dissipa-
tiveness [20]. The main point of passivity theory is that the passive
properties of systems can keep the systems internally stable. The
passivity theory was firstly proposed in the circuit analysis [21],
and since then has found successful applications in diverse areas
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such as stability [22,23], complexity [24], signal processing [25],
chaos control and synchronization [26,27], and fuzzy control [28].
In order to better analyze the dynamical behavior of complex
networks, the passivity has also received a lot of attention in
recent years and many important results on this topic have been
reported [29–34]. In [29], the authors investigated input passivity
and output passivity for a complex network with non-linear, time-
varying, non-symmetric and delayed coupling, respectively. Song
and Cao [30] studied the passivity of uncertain neural networks
with leakage delay and time-varying delay as well as generalized
activation functions by employing a combination of Lyapunov–
Krasovskii functionals, Newton–Leibniz formulation and the free-
weighting matrix method. In [31], the problem of passivity ana-
lysis was discussed for discrete-time stochastic Markovian jump
neural networks with both discrete and distributed delays.
Unfortunately, in these existing works [29–31], they assume that
the node state, the input and output variables are only functions of
time. But the node state, the input and output variables also
intensively depend on space variable in many practical situations.
Therefore, it is important to study the passivity of complex
dynamical networks with spatially and temporally varying state,
input and output variables [36,35]. Wang and Wu [35] investigated
the robust passivity of a class of parabolic complex networks with
multiple time-varying delays. In [36], the authors gave the pas-
sivity definition for the case where input and output variables are
varied with the time and space variables, and established several
sufficient conditions to guarantee the passivity of reaction–diffu-
sion neural networks. To our knowledge, very few researchers
have discussed the passivity of CRDNNs [37,38], in which the input
and output variables are varied with the time and space variables.
Especially, the passivity of the CRDNNs with switching topology
has not yet been investigated.

Motivated by the above discussions, the objective of this paper
is to investigate the input strict passivity and output strict pas-
sivity of CRDNNs with switching topology. By utilizing the Lya-
punov functional method combined with some inequality tech-
niques, several sufficient conditions are presented, ensuring the
input strict passivity and output strict passivity of CRDNNs with
switching topology. The passivity theory has long been a nice tool
for analyzing the synchronization of the complex networks, but
the relationship between passivity and synchronization of the
CRDNNs with switching topology has not yet been investigated.
Therefore, the relationship between passivity and synchronization
of the CNNs with switching topology and reaction–diffusion terms
is also considered in this paper.

The rest of this paper is organized as follows. In Section 2, the
considered model is presented and some preliminaries are given.
Section 3 is devoted to establishing some passivity criteria and
revealing the relationship between passivity and synchronization.
In Section 4, two simulation examples are provided to illustrate
the effectiveness of the theoretical results. Finally, we conclude
this paper and propose some further work in Section 5.

2. Network model and preliminaries

Let R¼ ð�1; þ1Þ;Rþ ¼ ½0; þ1Þ;Rn be the n-dimensional
Euclidean space and Rn�m be the space of n�m real matrices. 0
rPARn�nð0ZPARn�nÞ means that matrix P is symmetric and
semi-positive (semi-negative) definite. 0oPARn�nð04PARn�nÞ
means that matrix P is symmetric and positive (negative) definite.
In denotes the n�n real identity matrix. BT denotes the transpose
of matrix B. �denotes the Kronecker product of two matrices. λm
ð�Þ; λMð�Þ denote the minimum and the maximum eigenvalue of the
corresponding matrix, respectively. Ω¼ fx¼ ðx1; x2;…; xqÞT ∣jxs jo
ls; s¼ 1;2;…; qg is an open bounded domain in Rq with smooth

boundary ∂Ω;Ω ¼Ω [ ∂Ω and mesΩ denotes the measure of Ω.
For any eðx; tÞ ¼ e1ðx; tÞ; e2ðx; tÞ;…; enðx; tÞð ÞT ARn; ðx; tÞAΩ� R; jj eð�;
tÞjj 2 denotes

jj eð�; tÞjj 2 ¼
Z
Ω

Xn
i ¼ 1

e2i ðx; tÞdx
 !1=2

:

In addition, we define jj eð�; tÞjj τ ¼ sup�τrθr0 jj eð�; tþθÞjj 2.
To facilitate the readers, the mathematical model of the

CRDNNs with switching topology and time-varying delay is pre-
sented in a step-by-step format.

A single reaction–diffusion neural network with Dirichlet
boundary conditions is described by the following partial differ-
ential equations (PDEs):

∂wiðx; tÞ
∂t

¼ diΔwiðx; tÞ�aiwiðx; tÞþ Jiþ
Xn
j ¼ 1

bijf jðwjðx; tÞÞ; ð1Þ

where i¼ 1;2;…;n;n is the number of neurons in the network; wi

ðx; tÞAR is the state of the ith neuron at time t and in space x; x¼
ðx1; x2;…; xqÞT AΩ�Rq;Δ¼ Pq

s ¼ 1
∂2
∂x2s

is the Laplace diffusion
operator onΩ; di40 represents the transmission diffusion coefficient
along the ith neuron; f jð�Þ denotes the activation function of the jth
neuron; ai40 represents the rate with which the ith neuronwill reset
its potential to the resting state when disconnected from the network
and external input; bij denotes the strength of the jth neuron on the
ith neuron; Ji is a constant external input.

Throughout this paper, the function f jð�Þðj¼ 1;2;…;nÞ satisfies
the Lipschitz condition, that is, there exists positive constant ρj
such that

j f jðξ1Þ� f jðξ2Þjrρj jξ1�ξ2 j

for any ξ1; ξ2AR; where j � j is the Euclidean norm.
The initial value and boundary value conditions associated with

system (1) are given in the form

wiðx;0Þ ¼ϕiðxÞ; xAΩ; ð2Þ

wiðx; tÞ ¼ 0; ðx; tÞA∂Ω� ½0; þ1Þ; ð3Þ
where ϕiðxÞði¼ 1;2;…;nÞ is bounded and continuous on Ω.

We can rewrite system (1) in a compact form as follows:

∂wðx; tÞ
∂t

¼DΔwðx; tÞ�Awðx; tÞþ JþBf ðwðx; tÞÞ; ð4Þ

wherewðx; tÞ ¼ w1ðx; tÞ;w2ðx; tÞ;…;wnðx; tÞð ÞT ;D¼ diagðd1; d2;…; dnÞ;
B¼ ðbijÞn�n; J ¼ ðJ1; J2;…; JnÞT ; A¼ diagða1; a2;…; anÞ; f ðwðx; tÞÞ ¼
f 1ðw1
� ðx; tÞÞ; f 2ðw2ðx; tÞÞ;…; f nðwnðx; tÞÞÞT .

In this paper, we consider a complex dynamical network with
switching topology and time-varying delay consisting of N such
identical reaction–diffusion neural networks (4). The mathema-
tical model of the network can be described as follows:

∂ziðx; tÞ
∂t

¼DΔziðx; tÞ�Aziðx; tÞþ JþBf ðziðx; tÞÞ

þc
XN
j ¼ 1

GσðtÞ
ij Γzjðx; t�τðtÞÞþuiðx; tÞ; ð5Þ

where i¼ 1;2;…;N;N is the number of nodes in the network; τðtÞ
is the time-varying delay with 0rτðtÞrτ; ziðx; tÞ ¼ zi1ðx; tÞ;ð zi2ðx;
tÞ;…; zinðx; tÞÞT ARn is the state vector of node i;uiðx; tÞARn is the
control input; c is a positive real number, which represents the
overall coupling strength; Γ ¼ diagðγ1; γ2;…; γnÞARn�n is the
positive definite inner coupling matrix, which describes the indi-
vidual coupling between two nodes; σ : ½0; þ1Þ-M ¼ f1;2;…;mg
is a switching signal. For each kAM, Gk ¼ ðGk

ijÞN�N represents the
topological structure of network and coupling strength between
nodes, where Gij

k is defined as follows: if there exists a connection
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