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a b s t r a c t

Pairwise clustering methods partition a dataset using pairwise similarity between data-points. The
pairwise similarity matrix can be used to define a Markov random walk on the data points. This view
forms a probabilistic interpretation of spectral clustering methods. We utilize this probabilistic model to
define a novel clustering cost function that is based on maximizing the mutual information between
consecutively visited clusters of states of the Markov chain defined by the similarity matrix. This cost
function can be viewed as an extension of the information-bottleneck principle to the case of pairwise
clustering. We show that the complexity of a sequential clustering implementation of the suggested cost
function is linear in the dataset size on sparse graphs. The improved performance and the reduced
computational complexity of the proposed algorithm are demonstrated on several standard datasets and
on image segmentation task.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Effective automatic grouping of objects into clusters is one of
the fundamental problems in machine learning and in other fields
of study. In many approaches, the first step toward clustering a
dataset is extracting a feature vector from each object. This
reduces the problem to the aggregation of groups of vectors in a
feature space. A commonly used algorithm in this case is the k-
means. One drawback of k-means is that it can only find clusters
that are linearly separable in the feature space. Furthermore, in
many cases features representation is not available and we are
only given pairwise similarity information between data points.
For example, in social networks, only binary neighborhood rela-
tions are given. In these cases feature based clustering algorithms
cannot be applied in a straightforward way. Instead, we seek for a
partition of the data based only on the similarity measure between
the points.

The problem of pairwise clustering can be naturally viewed as a
graph clustering where the data points are associated with the
graph nodes and the pairwise affinities are the weights on the
edges. We want to find a partition of the graph such that the edges
between different groups have low weights and the edges within a
group have high weights. Out of the numerous pairwise clustering
algorithms, spectral clustering has gained considerable attention
in recent years due to its strong performance on arbitrary shaped

clusters, and its well-defined mathematical framework. Spectral
clustering algorithms [1–5] are based on finding a low dimen-
sional embedding using eigenvector computation which can be
slow. The Power Iteration Clustering (PIC) [6] is a variant of
spectral clustering that directly finds the low-dimensional
embedding. Graclus [7] is another efficient graph clustering algo-
rithm that is based on directly optimize the Ncut score using
multilevel kernel k-means and avoids the eigenvector com-
putations.

Another family of clustering algorithms, that are derived from
information-theory concepts, corresponds to the case of distribu-
tional clustering. Here each data point is described as a distribu-
tion. This situation is illustrated by the generic example of docu-
ment clustering based on word histograms [8,9]. In this case, the
mutual information (MI) between word occurrences and clusters
of documents is a natural clustering criterion that has been proven
to be powerful in many cases [10,11]. Given a clustering task, we
look for a clustering that maximizes the mutual information
between cluster labels and features of data points. In other words,
we search for a clustering that minimizes the information loss in
the feature space caused by shifting from points to clusters.
Information-theoretic approaches have been intensively used for
data clustering algorithms (see e.g. [12–15]). The information-
theoretical principle described above, however, is applicable when
a feature distribution, associated with each data point, is provided
as part of the problem setup. It is not straight-forward how to
adapt this information theoretic principle for the problem of graph
clustering where only pairwise similarity is given.

In this paper we extend the mutual information clustering
criterion to the domain of pairwise clustering. The probabilistic
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interpretation of spectral clustering, based on a Markov random
walk, is used to associate a distribution with each data point via
the corresponding conditional distribution row in the Markov
transition matrix. In particular, we define a random walk on the
data points and maximize the mutual information between cluster
labels of data-points that are visited during the random walk. We
show that this results in a clustering cost function, alternative to
the Normalized-Cut criterion, that yields improved performance
clustering on real-world datasets.

In this study we apply an information theoretic framework to
pairwise clustering as an alternative to spectral clustering. There
are other methods that combine information theory with spectral
clustering. Jenssen et al. [16] used an information-theoretic dis-
tance measure to define a graph-cut criterion for clustering.
Another approach is based on estimation of Renyi's entropy to
define optimal clustering in terms of certain spectral properties of
the affinity matrix [17]. Unlike these methods, we directly address
the pairwise matrix (with no need for feature vectors) and we use
entropy to analyze the random walk along the clustered data
points instead of measuring intra-variability of the data points.

The remainder of this paper is organized as follows. Section 2
defines the notation of similarity graphs and random walk on the
graph nodes. Section 3 describes the minimum information-loss cri-
terion for clustering the Markovian random-walk states. Section 4
introduces the Information-Theoretic Pairwise Clustering (ITPC)
algorithm. Section 5 describes the relation of the proposed algorithm
to the other information-theory based algorithms. Section 6 describes
numerical experiments on several standard datasets and Section 7
presents comparative results on image segmentation dataset. A pre-
liminary version of this work was presented at the SIMBAD Work-
shop, York, England, 2013.

2. Similarity graphs and random walks

Given a set of data points x1;…; xn and some symmetric notion
of similarity wijZ0 between all pairs of data points xi and xj, the
goal of clustering is to divide the data points into several groups
such that points in the same group are similar and points in dif-
ferent groups are dissimilar to each other. In the common case
where the data points live in the Euclidean space Rd, a reasonable
candidate for a similarity measure is the Gaussian function wij ¼
expð� Jxi�xj J2=ð2σ2ÞÞ (where the parameter σ controls the width
of the local neighborhoods). Ultimately, the choice of the similarity
function depends on the domain the data come from and the
specific clustering task. In a more general case we do not have an
explicit representation for each data point by a feature vector.
Instead, the only available information for data clustering is pair-
wise similarities between the data points.

We can represent the dataset of n points and pairwise simila-
rities fwijg as a similarity graph G¼ ðV ; EÞ. Each vertex in this graph
represents a data point. Two vertices i; jAV are connected if the
similarity wij between the corresponding data points is positive
and the edge is weighted by wij. The problem of clustering can
now be reformulated using the similarity graph: we want to find a
partition of the graph in which existing edges between different
groups have low weights and edges within a group have high
weights. The normalized-cut score is one of the popular ways to
translates this intuition into a formal clustering criterion.

Denote the similarity weight matrix by W ¼ ðwijÞ. For two (not
necessarily disjoint sets) A;B� V we define

WðA;BÞ ¼
X

iAA;jAB

wij: ð1Þ

The degree of a vertex iAV is defined as

di ¼
Xn

j ¼ 1

wij ¼Wðfig;VÞ:

The volume of A� V is

volðAÞ ¼
X

iAA

di ¼WðA;VÞ: ð2Þ

The normalized-cut score [2,18] of a given partitioning of the
graph nodes into m disjoint subsets fA1;…;Amg is

NcutðA1;…;AmÞ ¼
Xm

i ¼ 1

WðAi;AiÞ
volðAiÞ

ð3Þ

such that Ai is the complement set of A. In the clustering that
minimizes this score, edges between different groups have low
weights. The role of dividing by volðAiÞ is to ensure that the cluster
sizes (as measured by edge weights) are balanced. Minimizing the
Ncut score, however is NP hard even for m¼2 [19]. The Ncut
spectral clustering algorithm [2,18] is an algorithm that finds an
optimal solution for a relaxation of the Ncut criterion (3). All
variants of the spectral clustering algorithm are based on using
eigenvectors of the Laplacian matrix of the similarity graph to
represent the abstract data points as points in the Euclidean space.
The clusters can be then obtained by applying simple clustering
algorithms such as k-means in the embedded space [1–3]. Dhillon
et el. [7] applied kernel k-means to directly optimize the
Ncut score.

The Ncut score is defined using a graph theory formulation (3).
Meila and Shi [20] provided a probabilistic interpretation of it as a
criterion for clustering the states of the random walk defined by
the similarity matrix W. Define the degree matrix D as the diag-
onal matrix with the degrees d1;…; dn on the diagonal. The n� n
matrix P ¼D�1W is a stochastic matrix (non-negative entries, row
sums are all 1). Using the transition matrix P we can define a
stationary Markov chain that corresponds to a randomwalk on the
graph nodes. Let X ¼ fXtg be the n-valued stationary Markov chain
defined by

Pij ¼ ðD�1WÞij ¼ pðX2 ¼ jjX1 ¼ iÞ ¼wij

di
ð4Þ

The transition probability Pij of jumping in one step from i to j is
proportional to the edge weight wij. Let π ¼ ðπ1;…;πnÞ, where
πi ¼ di=ð

P
jdjÞ. It can be easily verified that P>π ¼ π. Hence, if the

graph is connected and non-bipartite, then π is the unique sta-
tionary distribution of the Markov chain defined by P [5]. There-
fore, the joint stationary probability of X1 and X2 is

pðX1 ¼ i;X2 ¼ jÞ ¼ wij

volðVÞ: ð5Þ

Given the random walk model (4) we can translate the pairwise
clustering problem, into the problem of clustering the states of a
Markov chain. Let A and B be two subsets of V. From Eq. (5) we
obtain that

pðX2ABjX1AAÞ ¼WðA;BÞ
volðAÞ : ð6Þ

Let fA1;…;Amg be a partition of the n graph nodes into m clusters.
Substituting Eqs. (6) in (3), we obtain the following probabilistic
interpretation of the Ncut score [20]:

NcutðA1;…;AmÞ ¼
Xm

i ¼ 1

pðX2 =2Ai jX1AAiÞ: ð7Þ

This interpretation of Ncut tells us that when minimizing Ncut, we
actually look for a graph partition such that a randomwalk seldom
transitions from one cluster to another.
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