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a b s t r a c t

Kernel canonical correlation analysis (CCA) is a powerful statistical tool characterizing nonlinear relations
between two sets of multidimensional variables. It has beenwidely used in many branches of science and
technology, e.g. bioinfomatics, multi-media information retrieval, cross-language document retrieval,
fMRI (functional magnetic resonance imaging). Previous algorithms focus on sparsity analysis of kernel
CCA. In this paper, from another viewpoint, we address a new gradient descent kernel CCA algorithm,
which is based on the relation between kernel CCA and linear systems of equations. Meanwhile, stability
analysis of the algorithm is addressed by means of suitable error decomposition formula and compact
operator theory. Theoretical analysis is elegantly investigated in terms of choices of regularization
parameter and step size. Experimental results on real-world datasets demonstrate the effectiveness of
the algorithm for content-based image retrieval task. The results indicate that the proposed algorithm is
stable and the performance is comparable with several state-of-the-art CCA algorithms.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Exploiting useful information from data is significant in the
community of modern statistical data analysis. Canonical correla-
tion analysis (CCA) is a powerful statistical tool for finding the
correlation between two sets of multidimensional variables. Pro-
posed by Hotelling [20], CCA aims at seeking a pair of linear
transformations associated with the two sets of variables such that
the projected variables in the lower-dimensional space are maxi-
mally correlated. It has many applications in, for instance, machine
learning [18], cross-language document retrieval [30], genomic data
analysis [32], multi-view learning [28]. The optimal pair of linear
transformations can be solved via a generalized eigenvalue pro-
blem, which is computationally expensive for high-dimensional
data. Moreover, CCA fails to capture non-linear relations due to its
linearity. It is not adequate for studying relation among variables in
a wide range of practical problems, especially when dealing with

the data that are not in the form of vectors, such as images,
microarray data and so on. Hence, detecting non-linear relations
among data is crucial in the community of data analysis. Therefore,
a natural extension of CCA, namely kernel CCA was introduced to
explore and exploit nonlinear relations among data [1] by the fre-
quently used kernel technique [26]. Let us review the kernel CCA
problem firstly. Given two random variables x and y, non-linear
mappings f(x) and g(y). Kernel CCA solves

max
f AHX ;gAHY

Cov½f ðxÞ; gðyÞ�
Var½f ðxÞ�1=2Var½gðyÞ�1=2

: ð1:1Þ

Here f a0; ga0. HX ;HY are RKHSs (reproducing kernel Hilbert
spaces, see [11–13] and the references therein) of real-valued
functions on measurable spaces X ;Y respectively, endowed with
measurable positive semi-definite kernels kX ; kY . ‘Cov’ denotes the
covariance between f(x) and g(y), and ‘Var’ means the variance of
functions. In practice, when given an i.i.d. sample fðxi; yiÞgmi ¼ 1 from
some unknown probability measure ρ, an ERM (empirical risk
minimization) estimation of (1.1) takes form

max
f AHX ;gAHY

dCov½f ðxÞ; gðyÞ�dVar½f ðxÞ�1=2dVar½gðyÞ�1=2; ð1:2Þ

where

dCov½f ðxÞ; gðyÞ� ¼ 1
m

Xm
i ¼ 1

f ðxiÞ�
1
m

Xm
j ¼ 1

f ðxjÞ
0@ 1A gðyiÞ�

1
m

Xm
j ¼ 1

gðyjÞ
0@ 1A;
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dVar½f ðxÞ� ¼ 1
m

Xm
i ¼ 1

f ðxiÞ�
1
m

Xm
j ¼ 1

f ðxjÞ
0@ 1A2

;

dVar½gðyÞ� ¼ 1
m

Xm
i ¼ 1

gðyiÞ�
1
m

Xm
j ¼ 1

gðyjÞ
0@ 1A2

:

In the literature, Tikhonov regularization scheme was introduced in
the denominator to overcome over-fitting problem [18], i.e. repla-
cing dVar½f ðxÞ�, dVar½gðyÞ� with dVar½f ðxÞ�þεm‖f ‖2HX and dVar½gðyÞ�þ
εm‖g‖2HY , respectively. Here regularization coefficient εm is a posi-
tive constant. Fukumizu et al. [16] investigated the above analysis
via the idea of cross-covariance operators, while Cai and Sun [5]
addressed convergence rates of it under AC condition. Kernel CCA
has been widely used in many fields of science and technology,
including: independent component analysis [2], biology and neu-
rology [19,29], bioinformatics [32], image retrieval [18], and cross-
language document retrieval [30].

However, how to select regularization parameter εm theoreti-
cally and practically remains largely unsolved. Here we consider a
novel least squares model of kernel CCA with l2-penalty, and
propose a gradient descent algorithm to implement it. Essential
difficulties arise when one apply optimization methods such as
gradient descent to solve Eq. (1.2), we overcome it by employing a
new relation between kernel CCA and linear systems of equations.
Our main contributions are stated as follows:

� Motivated by the ideas of [8] and [9], we discuss a newmodel of
kernel CCA via the theory of least squares in terms of l2-penalty.
Theoretical consistency is justified elegantly.

� A gradient descent algorithm for kernel CCA is analysed, which
is novel in the literature of kernel CCA. Choices of step size and
regularization parameters are also addressed.

The rest of the paper is organized as follows. In Section 2, we
describe a gradient descent algorithm for kernel CCA. Theoretical
analysis will be given in Section 3. Proof of theoretical results goes
to Section 4. Section 5 devotes to the numerical results of the
newly proposed algorithm.

2. Preliminaries and gradient descent kernel CCA algorithm

2.1. Preliminaries

Before delving into the algorithm, let us rewrite (1.2) in another
form. Kernel CCA constructs a feature map ϕx such that a data
matrix X ¼ ðx1;…; xmÞARn1�m can be converted to

Φx ¼ ðϕxðx1Þ;…;ϕxðxmÞÞARN 1�m;

here N 1 is the dimension of HX . Hence kernel function kX ðx1; x2Þ
takes form kX ðx1; x2Þ ¼ 〈ϕxðx1Þ;ϕxðx2Þ〉, 〈; 〉 is an inner product in
HX . Similarly, ϕy maps Y ¼ ðy1;…; ymÞARn2�m into HY by

Φy ¼ ðϕyðy1Þ;…;ϕyðymÞÞARN 2�m:

Denote Kx ¼ 〈Φx;Φx〉¼ ðkX ðxi; xjÞÞmi;j ¼ 1, Ky ¼ 〈Φy;Φy〉¼ ðkY ðyi; yjÞÞi;j
¼ 1m. Kx;Ky are called Gram matrices. Let f ¼ Pm

i ¼ 1
αiϕxðxiÞ ¼Φxα; g ¼

Pm
i ¼ 1 βiϕyðyiÞ ¼Φyβ, where α¼ ðα1;…;αmÞT ;β

¼ ðβ1;…;βmÞT ARm are called dual vectors. Here without loss of
generality, we assume that Φx and Φy have been centered. Simple
calculations show that problem Eq. (1.2) can be rewritten as [18].

maxαTKxKyβ

s:t:αTK2
xα¼ 1;

βTK2
yβ¼ 1: ð2:1Þ

In practice, onewould face a large amount of information retrieval tasks.
Considering problem (2.1) is not enough, especially in the coming of big
data era. Therefore multiple version of kernel CCA are introduced [8]:

max
Wx ;Wy

TraceðWT
xKxKyWyÞ

s:t: WT
xKxWx ¼ I;

WT
yKyWy ¼ I; ð2:2Þ

where Wx ¼ ðα1;…;αlÞ;Wy ¼ ðβ1;…;βlÞ, 1r lrrankðKxKyÞ. Theore-
tical analysis suggests that the solutions of Eq. (2.2) are the singular
values of KxKy. Firstly, we will characterize a new representation of
kernel CCA which was described in [9], for CCA,
see [8].

2.2. A new representation of kernel CCA

Define r1 ¼ rankðKxÞ; r2 ¼ rankðKyÞ and r3 ¼ rankðKxKyÞ. Let the
eigenvalue decomposition of Kx and Ky be

Kx ¼ U
D1 0
0 0

� �
UT ¼ U1 U2

� � D1 0
0 0

� �
U1 U2
� �T ¼U1D1U

T
1 ;

ð2:3Þ
and

Ky ¼ V
D2 0
0 0

� �
VT ¼ V1 V2

� � D2 0
0 0

� �
V1 V2
� �T ¼ V1D2V

T
1;

ð2:4Þ
respectively, where UARm�m;U1ARm�r1 ;U2ARm�ðm� r1Þ;D1ARr1�r1 ,
VARm�m;V1ARm�r2 ;V2ARm�ðm� r2Þ;D2ARr2�r2 . U;V are orthogo-
nal matrices, D1;D2 are non-singular and diagonal matrices. Let the
SVD (singular value decomposition) of UT

1V1 be

UT
1V1 ¼ P1D3P

T
2 ; ð2:5Þ

where P1ARr1�r1 ; P2ARr2�r2 , D3 is a diagonal matrix, r3rminfr1; r2g.
Chu et al. [9] stated that

Lemma 1. Any ðWx;WyÞ of the following forms:

Wx ¼U1D
�1
1 P1ð1 : lÞþU2E;

Wy ¼ V1D
�1
2 P2ð1 : lÞþV2F ;

(

where P1ð1 : lÞ; P2ð1 : lÞ are the first lð1r lrr3Þ columns of P1 and P2,
respectively. EARðd1 � r1Þ�l and FARðd2 � r2Þ�l are arbitrary matrices, is
a solution of optimization problem (2.2).

By applying the above lemma, one immediately have a new
representation of kernel CCA problem.

KxWx ¼U1P1ð1 : lÞ; KyWy ¼ V1P2ð1 : lÞ ð2:6Þ
Our aim is to find a solution (not all) that satisfy Eq. (2.6). There-
fore without loss of generality, let Wn

x ¼U1D
�1
1 P1ð1 : lÞ;

Wn

y ¼ V1D
�1
2 P2ð1 : lÞ, then ðWn

x ;W
n

yÞ is a solution pair that satisfy
Eq. (2.6). We will use a gradient descent approach to find it.
However, in practice, Kx;Ky are not invertible. Ordinary kernel CCA
method fails to detect mutual information between two variables x
and y for general kernels. This is the so called over-fitting problem
[18]. Taking Gaussian kernel

Kðs; tÞ ¼ exp � 1
2σ2 Js�t J2

� �
as an example. The Gram matrix Kx given by ðKxÞij ¼ exp

�1=2σ2 Jxi�xj J2
� �

has full rank provided that the sample points
fxigmi ¼ 1 are distinct (similarly for Ky) [24]. Then we have

rankðKxÞ ¼m�1; rankðKyÞ ¼m�1;

after centering. Hence the canonical correlations returned by
kernel CCA will be 1 even though they did not have any mutual
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