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a b s t r a c t

In this paper, coordination control is investigated for multi-robots to manipulate an object with a
common desired trajectory. Both trajectory tracking and control input minimization are considered for
each individual robot manipulator, such that possible disagreement between different manipulators can
be handled. Reinforcement learning is employed to cope with the problem of unknown dynamics of both
robots and the manipulated object. It is rigorously proven that the proposed method guarantees the
coordination control of the multi-robots system under study. The validity of the proposed method is
verified through simulation studies.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Coordinated manipulation of multi-robots has attracted
researchers' attention as it provides better rigidity and feasibility
compared to manipulation of a single robot, yet it brings along
challenging control problems [1]. Different from control of a single
robot manipulator, a coordination scheme is needed to avoid
possible disagreement between multi-robots, which will lead to
undesired results, e.g., large internal forces [2]. Typical coordina-
tion control schemes include hybrid position/force control and
leader–follower control [3]. Hybrid position/force control consid-
ers the position of the manipulated object to be in a certain
workspace, and the internal force to be within a small range
around the origin. In comparison, the leader–follower method
introduces a leader individual, which is followed by other manip-
ulators. Regrading these two coordination control schemes, while
the former requires the separation of directions for position and
force controls [4], the latter needs multi-robots to communicate
with each other through different interfaces. Enlightened by the
idea of optimal control, i.e., to achieve the trajectory tracking and
simultaneously to penalize the control effort, we propose a
coordination scheme in this paper to avoid limitations in existing
methods. In particular, when manipulating a common object by
multi-robots, each individual aims to track a prescribed trajectory
while it complies to others by penalizing its own control effort.

This will lead to an optimization-like problem which cannot be
handled by conventional optimal control, e.g., linear quadratic
regulator (LQR) [5], due to uncertain and nonlinear system
dynamics. In the literature, reinforcement learning, also known
as adaptive dynamic programming, has been extensively studied
in the control community to address this issue [6,7].

The idea of reinforcement learning is inspired by the phenom-
ena that human beings and other animals always learn from
experience through reward and punishment results for survival
and growth [8–11]. In particular, biological experiments show that
the dopamine neurotransmitter acts as a reinforcement signal
which favors learning at the neuron level [12]. Based on reinforce-
ment learning, a control signal can be generated for an agent to
interact with unknown environments. Typically, a cost function or
a reward function is defined to describe the control objective, and
a control scheme is developed to minimize/maximize the defined
cost/reward function [13]. Therefore, a reinforcement learning
control can be developed in the form of a composition of two
parts: a critic network and an actor network. A critic network is
developed to approximate the cost function, while an actor net-
work plays a role to minimize the cost function. Reinforcement
learning control has been developed in both continuous-time and
discrete-time domains. In [14], a reinforcement learning control
has been proposed for systems in continuous time and space. In
[15], a state observer is introduced to estimate the future state for
the design of adaptive dynamic programming for unknown non-
linear continuous-time systems. In [16], a discrete-time reinforce-
ment learning control is proposed with Lyapunov stability
analysis. In [17], optimal control is proposed for unknown

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.02.091
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ86 756 3668787.
E-mail address: chenl46@mail.sysu.edu.cn (L. Chen).

Neurocomputing 170 (2015) 168–175

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.02.091
http://dx.doi.org/10.1016/j.neucom.2015.02.091
http://dx.doi.org/10.1016/j.neucom.2015.02.091
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.02.091&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.02.091&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.02.091&domain=pdf
mailto:chenl46@mail.sysu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2015.02.091


nonaffine discrete-time systems by employing adaptive dynamic
programming. Reinforcement learning control has also been
investigated in control of robots. In [18], a natural actor-critic
algorithm is adopted for the learning of proper impedance for
robots in interacting with unknown environments. In [19], the
algorithm of policy improvement with path integrals is integrated
with reinforcement learning to achieve variable impedance con-
trol. In [20], impedance adaptation for robot control is developed
based on adaptive dynamic programming proposed in [21].
Literature reviews of reinforcement learning can be found in
[22,23], which introduce the use of reinforcement learning in
feedback control and state open challenges of developing a
reinforcement learning control.

Based on the above discussions, in this paper, we will introduce
a reinforcement learning control for coordinated manipulation of
multi-robots. First, a cost function is defined to describe the
tracking objective of each individual robot manipulator and its
compliance to others. Then, the coordination problem of multi-
robots will be transformed to an optimization-like problem. A
reinforcement learning control will be designed to minimize the
defined cost function, in the presence of unknown system
dynamics. Eventually, through Lyapunov stability analysis, the
performance of the proposed method will be discussed in detail.

The contributions of this paper are highlighted as follows:

(i) the problem of multi-robots coordination is formulated such
that both the tracking objective of each individual robot
manipulator and its compliance to others are described, with
neither the separation of task spaces nor extra communica-
tion interfaces;

(ii) system dynamics are transformed to a general model similar
to that of a single robot manipulator for the feasibility of
control design; and

(iii) a reinforcement learning control is developed subject to
unknown dynamics of robot manipulators and object, which
guarantee the coordination control of multi-robots.

The rest of the paper is organized as follows. In Section 2, the
problem of coordination control under study is formulated. In
Section 3, the transformation of system dynamics and design of a
reinforcement learning control are detailed, followed by the
rigorous performance analysis. In Section 4, the validity of the
proposed method is verified through simulation studies. Section 5
concludes this paper.

2. Problem formulation

2.1. System description

The system under study includes n individual robot manipula-
tors and a rigid object, where the object is tightly grasped by the
end-effector of each robot manipulator. It is assumed that there is
no relative motion between the robot manipulators and object.

The dynamics of the object in the task space are described as

mo €p�mog ¼ f o
Io _ωþω� Ioω¼ τo ð1Þ

where mo and Io are the mass and inertia matrix of the manipu-
lated object, p and ω are the position and angular velocity of the
object, respectively, fo and τo are the force and torque applied to
the mass center of the object, respectively, and g is the gravita-
tional acceleration.

Define xo ¼ ½pT ;θT �T where _θ ¼ω, and we have _xo ¼ ½ _pT ;ωT �T .
Then, the dynamics of the object can be rewritten in the following

form [24]:

Mo €xoþCoð _xoÞ _xoþGo ¼ Fo ð2Þ

where Mo ¼ moI
0

0
Io

h i
ARm�m, Coð _xoÞ _xo ¼ 0

ω�Ioω

h i
ARm, Go ¼ �mog

0

� �
ARm, and FoðtÞ ¼ f o

τo

h i
ARm.

Property 1. The matrix Coð _xoÞ is skew-symmetric, i.e.,
ϱTCoð _xoÞϱ¼ 0, for 8ϱARm.

The forward kinematics of the i-th robot manipulator is
described by xi ¼φiðqiÞ, where xiðtÞARmi and qiARmi are posi-
tions/orientations in the Cartesian space and joint coordinates in
the joint space, respectively. Differentiating xi ¼ϕðqiÞ with respect
to time results in _xi ¼ Jr;iðqiÞ _qi, where Jr;iðqiÞARmi�mi is the Jacobian
matrix for the i-th robot manipulator. Besides, JiðxoÞ is the Jacobian
matrix which describes the kinematic relationship between the
mass center of the object and the end-effector of the i-th robot
manipulator.

Assumption 1. The Jacobian matrices Jr;iðqiÞ and JiðxoÞ are non-
singular in a finite workspace.

The dynamics of the i-th robot manipulator in the joint space
are

Mr;iðqiÞ €qiþCr;iðqi; _qiÞ _qiþGr;iðqiÞþ JTr;iðqiÞFi ¼ ur;i; i¼ 1;2;3;…;n

ð3Þ
where Mr;iðqiÞARmi�mi is the inertia matrix, Cr;iðqi; _qiÞ _qiARmi

denotes the Coriolis and Centrifugal force, Gr;iðqiÞARmi is the
gravitational force, Fi denotes the force exerted on the object by
the end-effector of the i-th robot manipulator at the interaction
point, and ur;iARmi is the control input.

By considering the Jacobian matrix Jr;iðqiÞ, the dynamics of the
i-th robot manipulator can be described in the Cartesian space as
below:

MiðqiÞ €xiþCiðqi; _qiÞ _xiþGiðqiÞþFi ¼ ui; i¼ 1;2;3;…;n ð4Þ
where

MiðqiÞ ¼ J�T
r;i ðqiÞMr;iðqiÞJ�1

r;i ðqiÞ
Ciðqi; _qiÞ ¼ J�T

r;i ðqiÞðCr;iðqi; _qiÞ�Mr;iðqi; _qiÞJ�1
r;i ðqiÞ_J r;iðqiÞÞJ�1

r;i ðqiÞ
GiðqiÞ ¼ J�T

r;i ðqiÞGr;iðqiÞ; ui ¼ J�T
r;i ðqiÞur;i ð5Þ

Property 2 (Ge et al. [25]). The matrix MiðqiÞ is symmetric and
positive definite.

Property 3 (Ge et al. [25]). The matrix _MiðqiÞ�2Ciðqi; _qiÞ is skew-
symmetric if Ciðqi; _qiÞ is in Christoffel form, i.e. ϱT ð _MiðqiÞ
�2Ciðqi; _qiÞÞϱ¼ 0, for 8ϱARmi .

The control objective of this work is to let the object move
along a desired trajectory xd while minimizing the control efforts
of all robot manipulators. In particular, we define the following
cost function:

GðtÞ ¼
Z 1

0
cðsÞ ds ð6Þ

where c(t) is an instant cost function defined as

cðtÞ ¼ ðxo�xdÞTQ1ðxo�xdÞþ _xToQ2 _xoþ
Xn
i ¼ 1

uT
r;iRiur;i ð7Þ

where Q1Z0, Q2Z0, and Ri40.

Remark 1. The rule of thumb to choose Q1 and Ri is as follows: a
larger value for Q1 indicates that a more accurate tracking
performance is expected, a larger value for Q2 indicates that a
smoother motion is desirable, and a larger value for Ri indicates
that the load of the i-th robot manipulator is expected to be
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