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a b s t r a c t

A novel level set method (LSM) with the constraint of shape priors is proposed to implement a selective
image segmentation. Firstly, the shape priors are aligned by using image moment to deprive the spatial
related information. Secondly, the aligned shape priors are projected into the subspace expanded by
using locality preserving projection to measure the similarity between the shapes. Finally, a new energy
functional is built by combing data-driven and shape-driven energy items to implement a selective
image segmentation method. We assess the proposed method and some representative LSMs on the
synthetic, medical and natural images, the results suggest that the proposed one is superior to the pure
data-driven LSMs and the representative LSMs with shape priors.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Image segmentation is an important bridge connecting the low-
layer image processing and the high-layer image analysis and
understanding [1]. In past several decades, numerous segmentation
methods based on different theories, e.g., graph-based ones [2] and
PDE-based ones [3], have been proposed. Graph-based image seg-
mentation methods map an image onto a graph, and depict the
relationship between pixels by weighted edges. In such way, image
segmentation problem is modeled as a procedure of partitioning a
graph into a set of sub-graphs, each of which represents a meaningful
object in the image. Then, the segmentation problem is solved in a
spatially discrete space. Some graph-based methods, e.g., minimal
spanning tree based ones [4], graph-cut based ones [5,6], and
shortest path based ones [7] are proposed and achieve better
performance. However, the graph-based segmentation methods tend
to partition small regions from images [8]. As an alternative, active
contour models (ACMs) based on partial differential equations (PDEs)
involves some characters of objects' outline, e.g., closure and smooth-
ness, into segmentation into energy function, and realize segmenta-
tion by minimizing energy function. Up to now, ACMs have become a
popular technique for image segmentation.

Snake algorithm [9,10] is the pioneer of ACMs, and has beenwidely
used in image segmentation, object recovery, etc. Even so, Snake
cannot well handle the topological changing of evolving curve, i.e.,
splitting and merging. Osher and Sethian [11] then proposed a signed
distance function (SDF) defined in higher dimensional space and imp-
licitly described a closed planar curve by the zero level set of SDF.
Allowing the evolving curve to change its topology [12] SDF greatly
facilitates the comparison of different curves in topology. Following
the work of Osher and Sethian [11], Malladi et al. [13] developed a
formula for shape recovery; Caselles et al. [14] and Chopp [15] also
designed some derived PDEs from the associated energy functional.
These three methods started the edge-based LSMs which are featured
with the image gradient based stopping force. Yet, this kind of edge-
based stopping force is not robust against noise and cannot well han-
dle the weak boundaries of complex structures. Chan and Vese [16]
designed a region-based stopping force based on the Mumford-Shah
model [17,18]. It boosted the region-based approaches and was succ-
essively extended to vector-valued images [19], tensor-valued images
[20,21], multi-phase level sets [22], and piecewise smooth approxima-
tion [23]. Additionally, Rousson et al. [24] and Chen et al. [25] inco-
rporated the region information by applying maximum a-posteriori
(MAP) for image segmentation. Li et al. designed a regularized term in
energy function to keep LSF being signed during evolution [27,28].
Wang et al. combined the local and global cues of images to improve
the performance on weak boundaries, and achieved better result [26].
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To overcome the inhomogeneity of objects, Li et al. proposed a local
clustering criterion function [29].

Both the edge-based [11,13–15] and the region-based [16,19,21]
LSMs achieved success on different images, however, they just
consider low level features. That means that the curve's revolution
is just driven by image data without any high level shape knowl-
edge. Consequently, it is difficult for them to well handle the
segmentation of broken objects, the overlapped objects and the
objects in complex background. LSMs with shape priors, to some
extent, could improve the segmentation performance on these
objects. According to the way of incorporating external constraint,
the LSMs with shape priors can be divided into two categories, i.e.,
the parametric model and the non-parametric model.

Extending the work of Chen et al. [25], Chan and Zhu [30] defined
a shape distance function and proposed a LSM with a single shape
prior. This distance function was also used in [31] which added a
dynamic label function into the energy functional. These two models,
however, just consider the distance between the current shape and
the shape prior, and cannot be directly applied to the case with
multiple shape priors. Fahmi and Farag [32] extended [30] to the
multiple level set functions with multiple shape priors, but there is
still one shape prior for one level set function. Tsai et al. [33,34]
utilized principle component analysis (PCA) [35] on the shape priors
and obtained a series of eigen shapes (i.e., eigen vectors in matrix
form). The linear combination of eigen shapes is used to approximate
the shape of current object, however, the problem is that this linear
reconstruction does not always correspond to an effect shape [42].
Rousson and Paragios [24] employed the shape-to-area principle for
the shape alignment, and then built the shape-driven energy item
along the thought of Tsai et al. [33,34]. Hossam [36] presented a more
complex transformation with more motion parameters to improve
the work of [33,34]. Considering these methods all minimize the
energy functional by optimizing the affine parameters and/or local
motion parameters (e.g., the coefficients of PCA), we classify them
together as the parametric model with shape priors. The main sho-
rtage of the parametric model is that the evolution process is difficult
to converge when the number of parameters is increasing. Addition-
ally, in practice, the step of parameters for gradient descent algorithm
is hard to determine.

Instead of optimizing the motion parameters, the non-parametric
model with shape priors employs statistical techniques to involve the
shape priors into the curve evolution. Leventon et al. [37] performed
PCA on the aligned shape priors. Under the Gaussian distribution
assumption, MAP thenwas utilized to design the shape-driven energy
item. Following the work of Leventon et al., Derraz et al. [38] and
Samuel et al. [39] replaced PCA with Kernel-PCA to capture the real
distribution structure in low-dimensional space. Prisacariu et al.
assumed the shape priors distribute on a low-dimensional manifold
by which a similarity measure is designed [40]. Chen et al. utilized
sparse representation to code shape priors instead of PCA/KPCA [41].
Cremers et al. [42] made an intrinsic alignment on the shape priors,
and then employed kernel density estimation (KDE) to build a stat-
istical-based shape energy term. The intrinsic alignment does not
need to iteratively compute the parameters of affine transformation
like in [43], and the shape-driven energy item abandons the motion
parameters in parametric models [33,34,36]. However, there are some
problems worth considering as follows. Firstly, the intrinsic alignment
cannot array the shape priors along a specific orientation, which
causes that these method cannot work well when the shape priors
are not parallel to the given shape. Secondly, the shape priors sparsely
distributing in a high-dimensional space makes it difficult to obtain a
real distribution structure.

To overcome these two problems, we propose a novel LSM with
shape priors. Inspired by [42], the shape priors are rearranged
based on the image moments. For the case with multiple shape
priors, Locality Preserving Projections (LPP) [44] is utilized to

reduce the dimensionality of shape priors and to capture their
real statistical distribution in a low-dimensional space. The pro-
posed model with shape priors has three advantages as follows.
Firstly, we use the moment-based alignment based on the intrinsic
alignment to deprive the shape priors of scale, position and angle
information, which Secondly, the statistical distribution of the
shape priors is observed in a low-dimensional subspace expanded
by using LPP. The expanded subspace preserves the locality
relationship of shape priors in observation space, and contributes
to modeling the statistical distribution more accurately. A direct
result is that the LPP based shape-driven energy term can well
handle the shape with non-smooth outline. The proposed method
is compared with some representative LSMs [16,39,42], and the
comparison results show that the proposed method obtains a
competitive performance than the three methods.

The rest of this paper is organized as follows. Section 2 revisits
the previous related work, Section 3 presents the proposed
method including two cases, i.e., single shape prior and multiple
shape priors, respectively. Section 4 evaluates the performance of
the proposed method comparing with other LSMs [16,42] on the
artificial images, natural images and medical images. Section 5 is
the conclusion.

2. Previous related work

Chan and Vese [16] proposed a region-based LSM by using
Mumford-Shah model [17,18]. This method is robust against noise
and usually combined with the shape-driven energy item to
implement a selective image segmentation. For the convenience
of the hereinafter discussion, here we briefly introduce the Chan-
Vese method [16] whose energy functional is defined as
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where Ω denotes the image domain; c1 and c2 are the grayscale
averages inward and outward the evolving curve, respectively;
HðU Þ is the Heaviside function and HðϕÞ hence denotes the region
enclosed by the evolving curve. The first term is an internal energy
term making the evolving curve smooth enough. The second term
is usually being omitted for having same effect with the first term
[19]. The last two terms are the fitting errors between the image to
be segmented I and the piecewise constant approximation I0, i.e.,

I0 ¼ c1H ϕ
� �þc2 1�H ϕ

� �� �
: ð2Þ

It is not difficult to see that the essence of Chan-Vese method [16]
is seeking an optimized piecewise constant representation for the
given image under a geometrical constraint, i.e., the evolving curve,
i.e., the first term in Eq. (1), is kept smooth. There are some variant
expansions of the Chan-Vese method [16], for example, Rousson et al.
[24] and Chen et al. [25] employed MAP to design the external
energy item. Since the Eq. (1) is most simple and representative, it is
usually employed to build more complex energy functional.

For LSMs with shape priors, Leventon et al. [37] applied PCA to
the aligned shape priors and obtained a series of eigen shapes and
one mean shape. Using the distance of a current shape and the linear
combination of these shapes, Leventon develop the shape-driven
energy item. Whereas, PCA assumes that the shapes are Gaussian
distribution which is usually not satisfied. Cremers et al. [31] utilized
a moment-based alignment method to compute the affine para-
meters, and KDE to estimate the probability without the assumption
of Gaussian distribution.
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