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a b s t r a c t

The total variation (TV) model is one of the most successful methods for image restoration, as well as an
ideal bed to develop optimization algorithms for solving sparse representation problems. Previous
studies showed that derivative space formulation of the image restoration model is useful in improving
the success rate in image recovery and kernel estimation performance in blind deconvolution. However,
little attentions are paid on the model and algorithm for derivative space based image restoration. In this
paper, we study the TV based image restoration (TVIR) by developing a novel derivative space-based
reformulation together with an efficient derivative alternating direction method of multipliers (D-
ADMM) algorithm. Thanks to the simplicity of the proposed derivative space reformulation, D-ADMM
only requires four fast Fourier transform (FFT) operations per iteration, and is much more efficient than
the other augmented Lagrangian methods. Numerical experiments show that, D-ADMM can obtain
satisfactory restoration result and is much faster than the state-of-the-art TVIR algorithms.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In many image processing applications, the image in hand is
only a degraded observation y of the original image x. In the linear
degradation model, the procedure can be modeled as

y¼Axþe; ð1Þ

where A is a linear operator and e is the additive Gaussian white
noise (AGWN). Image restoration aims to estimate the clear image
x from its degraded observation y, and is well known as a typical
linear inverse problem [1].

Since the linear operator A usually is ill-conditioned, the recovery
of x from y is an ill-posed problem, and a typical image restoration
models generally includes a fidelity term and a regularization term,
resulting in the following optimization problem:

min
x

1
2
JAx�yJ22þτRðxÞ; ð2Þ

where RðxÞ is some regularizer on x, and τ is the regularization
parameter. By far, based on various models on image prior, a number
of regularizers, e.g., total variation (TV) [2], gradient-based [3], wavelet-
based [4], dictionary-based sparsity [5–7], and non-local models
[8–10], have been developed for image restoration. Due to its
simplicity and ability to preserve edges, the TV regularizer has been

widely applied to various image restoration and recovery tasks, e.g.,
denoising [11,12], deconvolution [13–15], and compressed sensing (CS)
[16,17].

The TV model is also an ideal bed to develop optimization
algorithms for solving sparse representation problems. By far, a
number of methods have been developed for TVIR. These algo-
rithms, including split-Bregman [18], accelerated proximal gradient
[19–21], and alternating direction method of multipliers [22–24],
were applied to TVIR, and then were adopted for other image
processing, computer vision, and machine learning tasks [3,25–29].

1.1. Related work

The TVIR model can be formulated as

min
x

FðxÞ ¼ 1
2
JAx�yJ22þτJDxJ ; ð3Þ

where D¼ ½DT
h ;D

T
v �T is the discrete gradient operator, J � J denotes

the norm in the gradient space (including both anisotropic and
isotropic versions, and please refer to Section 2.1 for detailed
definitions of TV regularizers), and τ is the regularization
parameter.

The augmented Lagrangian methods (ALM) are one class of the
most efficient among various TVIR algorithms. Because of the non-
smoothness of the TV regularizer, variable splitting strategies
usually are required in the ALM-based algorithms. By far, there
are mainly two variable splitting strategies for ALM-based TVIR. In
[23], an auxiliary variable u was introduced to substitute the
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variable x in the fidelity term, resulting in the following equality-
constrained optimization problem,

min
x;u

1
2
JAu�yJ22þτJDxJ s:t: u¼ x: ð4Þ

By incorporating with the efficient TV-based denoising algorithm
[12], Afonso et al. developed a split augmented Lagrangian
shrinkage algorithm (SALSA) for TVIR. In [22,30], another variable
splitting strategy was adopted in FTVd by introducing an auxiliary
variable d to substitute Dx in the regularizer, resulting in the
following equivalent formulation:

min
x;d

1
2
JAx�yJ22þτJdJ s:t: d¼Dx; ð5Þ

where d¼ ½dT
h ;d

T
v �T with dh ¼Dhx, dv ¼Dvx. With this formulation,

each subproblem of the ALM algorithms can be efficiently solved,
making FTVd the state-of-the-art TVIR methods in terms of
computational efficiency.

Recently, derivative space formulation of the image restoration
model had received considerable research interests and shown
several unique advantages in compressed sensing [31,32], image
restoration [33], and blind deconvolution [34]. In compressed
sensing, Patel et al. [31] proposed a GradientRec approach which
first used the compressed sensing (CS) algorithm to recover the
gradient images and then reconstructed the original image from
the gradient images. Because the gradient images are much more
sparse, it had been shown in [31] that derivative space based
GradientRec could obtain higher success rate in image recovery.

In image restoration, Michailovich [33] also introduced a
variable d to substitute Dx in the regularizer. By assuming that
the image x has zero mean value, a left inverse operator U dð Þ [35]
can be employed to recover the original image from the derivative
space, i.e., x¼ U dð Þ. Thus, the variable x can be removed from the
model in Eq. (3), and TVIR can be formulated in the derivative
space,

min
d

1
2
JAUfdg�yJ2þτJdJ : ð6Þ

Michailovich [33] proposed a TV-based iterative shrinkage (TVIS)
algorithm for solving the model in Eq. (6).

In blind deconvolution, recent studies showed that better
kernel estimation performance can generally be obtained in the
derivative space than in the image space [34,36–38]. Cho and Lee
[39] analyzed the condition numbers of the Hessians which
indicated that the Hessian in the derivative space has a diagonally
dominant structure and has a much smaller condition numbers
than that in the image space.

Although previous studies had indicated the advantages of
derivative space formulation, little attentions are paid on the
proper modeling and efficient algorithms for derivative space
based image restoration. For example, GradientRec only greedily
solved the TV based CS problem and cannot guarantee the
convergence to the solution of the original problem. The conver-
gence rate of TVIS is O t�1� �

, which is much slower than the state-
of-the-art TVIR algorithms.

In this paper, we study the derivative space TVIR problem by
proposing a novel derivative space - based reformulation together
with an efficient derivative alternating direction method of multi-
pliers (D-ADMM) algorithm. This work is an extension of [40],
based on which we deduce an explicit formulation of TVIR in the
derivative space and propose two ADMM-based algorithms to
solve it efficiently. First, by analyzing the connections of image
space and derivative space, we introduce an explicit equality
constraint on the gradients d, and suggest a novel derivative space
based reformulation of TVIR. Compared with the formulation in
[33], the proposed formulation is more concise and much easier to

be solved. Then, we adopt the alternating direction method of
multipliers (ADMM) algorithm to solve the constrained optimiza-
tion problem, resulting in the proposed derivative-space ADMM
(D-ADMM) algorithm. D-ADMM only requires four fast Fourier
transform (FFT) operations per iteration, and is much more
efficient than the other TVIR methods. Finally, experimental
results show that D-ADMM can obtain satisfactory restoration
results and is much faster than the state-of-the-art TVIR algo-
rithms, e.g., FTVd and SALSA.

1.2. Organization

This paper is organized as follows. Section 2 introduces some
background knowledge related to this paper. Section 3 presents
the derivative space based reformulation of TVIR, and Section 4
describes the proposed D-ADMM algorithms. Section 5 provides
the experimental results by comparing D-ADMM with the state-
of-the-art methods. Finally, Section 5 ends this paper with some
concluding remarks.

2. Preliminaries

In this section, we first introduce the discrete TV operators
with periodic boundary conditions, then summarize the related
proximal operators used in this paper, and finally, briefly review
the ADMM algorithm.

2.1. The discrete TV operators

Analogous to [33], we assume that the image x should lie in the
Rm�n space U with zero mean value, i.e., U¼ xARm�n jmean xð Þ ¼�
0g. With the assumption of periodic boundary conditions, the
gradient operator D, also notated as ∇, is defined as

Dhxð Þk;l ¼ xk;l�xk;l�1 with xk;�1 ¼ xk;n�1

Dvxð Þk;l ¼ xk;l�xk�1;l with x�1;l ¼ xm�1;l ð7Þ

where k¼ 0;1;2;…;m�1 and l¼ 0;1;2;…;n�1. Thus, the aniso-
tropic TV [19,21] is defined as

TVaðxÞ ¼
Xm�1

k ¼ 0

Xn�1

l ¼ 0

Dhxð Þk;l
�� ��þ Dvxð Þk;l

�� ��� �
: ð8Þ

The isotropic TV [19,21] is defined by

TViðxÞ ¼
Xm�1

k ¼ 0

Xn�1

l ¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dhxð Þ2k;lþ Dvxð Þ2k;l

q
: ð9Þ

The adjoint operators Dn

h and Dn

v of Dh and Dv can be defined by

Dn

hx
� �

k;l ¼ xk;l�xk;lþ1 with xk;n ¼ xk;0

Dn

vx
� �

k;l ¼ xk;l�xkþ1;l with xm;l ¼ x0;l; ð10Þ

respectively.
The images x, dh and dv can be rearranged into the correspond-

ing vectors, and vice versa. Thus, we use the same small bold
notation to denote an image and its vectorization, and this should
not cause ambiguity by referring to the context. Then the gradient
operators Dh and Dv can be written as matrices Dh and Dv with
dh ¼Dhx and dv ¼Dvx, respectively, The corresponding adjoint
operators Dn

h and Dn

v are associated with matrices DT
h and DT

v ,
respectively.

2.2. Related proximal operators

Given a (nonsmooth) convex function gðxÞ and a vector z, the
proximal operator with parameter λ of g is the function proxλg
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