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a b s t r a c t

This paper is concerned with the periodic synchronization problem for a general class of delayed neural
networks (DNNs) with discontinuous neuron activation. One of the purposes is to analyze the problem
of periodic orbits. To do so, we introduce new tools including inequality techniques and Kakutani’s fixed
point theoremof set-valuedmaps to derive the existence of periodic solution. Another purpose is to design
a switching state-feedback control for realizing global exponential synchronization of the drive–response
network system with periodic coefficients. Unlike the previous works on periodic synchronization of
neural network, both the neuron activations and controllers in this paper are allowed to be discontinuous.
Moreover, owing to the occurrence of delays in neuron signal, the neural network model is described by
the functional differential equation. So we introduce extended Filippov-framework to deal with the basic
issues of solutions for discontinuous DNNs. Finally, two examples and simulation experiments are given
to illustrate the proposed method andmain results which have an important instructional significance in
the design of periodic synchronized DNNs circuits involving discontinuous or switching factors.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the field of artificial neural networks, discontinuities are typ-
ical phenomena due to the control actions of some interesting
engineering tasks. There are many different classes of discontin-
uous neural network systems and implemented integration cir-
cuits such as neural network possessing discontinuous neuron
activation (Forti, Grazzini, Nistri, & Pancioni, 2006; Forti & Nistri,
2003; Forti, Nistri, & Papini, 2005), neuron system with McCul-
loch–Pitts nonlinearity (Huang & Wu, 2001), discontinuous Chen
system (Chen & Ueta, 1999), memristor-based Chua’s circuit (Ad-
hikari, Yang, Kim, & Chua, 2012; Chua, 1971; Sprott, 2000), dis-
continuous Sprott circuit (Filippov, 1988) and so on. Especially, the
neural networks with discontinuous activations have been proved
really useful as ideal models to solve linear or nonlinear program-
ming problems, constrained optimization problems, and various
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control problems. Because the dynamical behaviors of this class
of network system is described by ordinary differential equation
(ODE) with discontinuous state on the right-hand side, the tradi-
tional theoretical framework has been shown to be invalid for deal-
ing with the solutions of ODE with discontinuous right-hand side.
In order to overcome this difficulty, Filippov developed a new the-
oretical framework based on differential inclusions and redefined
the concept of solution named Filippov-solution (Papini & Taddei,
2005). Actually, by using the Filippov regularization method (i.e.,
constructing appropriate Filippov set-valued map), the solution of
ODEwith discontinuous right-hand side could be transformed into
a solution of differential inclusion. By doing so, many useful results
concerning the basic properties of solutions in the sense of Filippov
and more complex dynamic phenomena to ODE with discontinu-
ous right-hand side can be obtained. In 2003, Forti et al. firstly in-
troduced the Filippov differential inclusion framework to study the
dynamical behaviors of neural networkmodelswith discontinuous
neuron activations (Forti & Nistri, 2003). This motivated the lat-
ter investigations on neural networks with discontinuous neuron
activations (see, for example, Allegretto, Papini, & Forti, 2010, Cai,
Huang, Guo, & Chen, 2012, Huang & Guo, 2009, Huang, Cai, Zhang,
& Duan, 2013; Huang, Wang, & Zhou, 2009, Liu & Cao, 2009, Liu,
Cao, & Yu, 2012; Liu, Chen, Cao, & Lu, 2011, Lu & Chen, 2008, Qin,
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Xue, & Wang, 2013 and Yang & Cao, 2013). However, the theoreti-
cal results on periodic synchronization of neural network systems
possessing discontinuous neuron activations are few.

Periodic synchronization, which means that the dynamical be-
haviors of coupled periodic systems achieve the same time-spatial
state, can be found in a wide variety of science and engineering
fields involving periodic factors, such as secure communication,
meteorology, and information processing. Actually, one can con-
trol the periodic drive–response system states to converge some
periodic orbit by way of periodic synchronization. Therefore, an
unknown periodic dynamical system can be understood from the
well-known periodic dynamical system by periodic synchroniza-
tion control. Up to now, much attention has been paid to analyze
periodic synchronization problems (Suzuki & Imai, 2004; Zhou,
Huang, Qi, Yang, & Xie, 2005; Zou & Zhan, 2008). In particular,
in the field of neural networks, some attempts have been made
to investigate the periodic synchronization problems for dynam-
ical neuron system possessing periodic coefficients and discontin-
uous property. In Liu, Cao, and Huang (2010), complete periodic
synchronization was considered for the delayed neural networks
with discontinuous activation functions by using non-smooth Lya-
punov method and linear matrix inequality. Authors of Wu, Li,
Ding, Zhang, and Yao (2014);Wu, Li, Zhang, and Yao (in press);Wu,
Zhang, Ding, Guo, and Wang (2013) investigated different types
of periodic synchronization problems for memristor-based neural
networksmodeled by state-dependent discontinuous or switching
systems. Note that the human brain is often in periodic oscillatory
or chaos state. So the periodic synchronization analysis of discon-
tinuous drive–response network system is an important step for
understanding the function of human brain and further enables us
to simulate the human brain under periodic environment. How-
ever, the analysis of periodic synchronization issues of neural net-
works with discontinuous activation is not a simple task and there
still lacks effective analysis methods. Such periodic synchroniza-
tion analysis is faced with four difficulties as follows:

(1) How to ensure the existence of periodic orbits for discontinu-
ous neural networks?

(2) What kind of controller should be designed such that the pe-
riodic synchronization can be realized? If we add a switching
term to the classical controller, whether the uncertain differ-
ences between the Filippov solutions of the drive and response
network systems can be well handled?

(3) If time delays are considered, how to extend the Filippov-
framework for dealing with the solutions of discontinuous de-
layed network systems? What role do inequality techniques
play?

(4) How to propose some sufficient conditions which are applica-
ble to general discontinuous delayed network systems and are
easy to be verified?

To the best of the authors’ knowledge, periodic synchronization
of complex periodic networks coupled with nonidentical periodic
neuron systems possessing discontinuous activations is still sel-
dom. Motivated by the above discussions, this paper aims to over-
come these four difficulties and achieve periodic synchronization
control of delayed network system with discontinuous neuron ac-
tivation.

The rest of this paper is organized as follows. In Section 2,
the model description and preliminaries including some useful
definitions and lemmas are briefly given. In Section 3, the fixed
point theory of set-value map is employed to analyze the exis-
tence of periodic orbits for discontinuous delayed network sys-
tems. Several sufficient conditions are derived to guarantee the
existence of periodic solutions in corollaries. In Section 4, by de-
signing novel switching state-feedback control, global exponential

synchronization of the drive–response network system with peri-
odic coefficients is studied. In Section 5, two examples and simula-
tion experiment are presented to illustrate the proposed methods
and theoretical results. Finally, main conclusions reached in this
paper are drawn in Section 6.
Notations: Let Rn denote the n-dimensional Euclidean space.
The superscript ‘‘T’’ represents the transpose operator. Given
the column vectors x = (x1, x2, . . . , xn)T ∈ Rn and y =

(y1, y2, . . . , yn)T ∈ Rn, ⟨x, y⟩ = xTy =
n

i=1 xiyi stands for the
scalar product of x and y. If x ∈ Rn, let us define the norm ∥x∥1 =n

i=1 |xi|, while ∥x∥ denotes any vector norm of x. Given a set E ⊂

Rn, by meas(E)we mean the Lebesgue measure of set E in Rn and
co[E] represents the closure of the convex hull of E. If z ∈ Rn and
δ > 0,B(z, δ) = {ẑ ∈ Rn

: ∥ẑ−z∥ ≤ δ} denotes the ball of δ about
z. Given the function V : Rn

→ R, ∂V means Clarke’s generalized
gradient of V . By L1([0, T ),Rn), T ≤ +∞, we denote the Banach
space of the Lebesgue integrable functions g : [0, T ) :→ Rn

equipped with the norm
 T
0 ∥g(t)∥dt or

 T
0 ∥g(t)∥1dt . For any

continuous ω-periodic function g(t) defined on R, we set

ḡ =
1
ω

 ω

0
g(t)dt, gM

= sup
t∈[0,ω]

|g(t)|, gL
= inf

t∈[0,ω]

|g(t)|.

2. Model description and preliminaries

In this paper, we consider a general class of time-varying
delayed neural networks described by the following functional
differential equations:

dxi(t)
dt

= −di(t)xi(t)+

n
j=1

aij(t)fj(xj(t))+

n
j=1

bij(t)fj

× (xj(t − τj(t)))+ Ji(t), i ∈ N, (1)

where N = {1, 2, . . . , n}, n corresponds to the number of units in
the network system (1); xi(t) represents the state variable of the ith
unit at time t; fj(·) denotes the activation function of jth neuron;
di(t) represents the self-inhibition of the ith neuron unit at time
t; aij(t) and bij(t) are connection weights of the jth unit on the ith
unit at time t and time t − τj(t), respectively; τj(t) corresponds to
the transmission delay at time t; Ji(t) is the neuron input on the ith
unit at time t .

Throughout this paper, the neuron activations in network
system (1) are assumed to possess the following basic properties:

(H 1) For every i ∈ N, fi : R → R is piecewise continuous. That
is, fi is continuous in R except on a countable set of isolate
points {ρ i

k}, where there exist finite right and left limits,
f +

i (ρ
i
k) and f −

i (ρ
i
k), respectively. Moreover, on any compact

interval ofR, fi has atmost a finite number of discontinuities.
(H 2) For each i ∈ N, there exist nonnegative constants αi and βi

such that

sup
γi∈co[fi(xi)]

|γi| ≤ αi|xi| + βi, ∀xi ∈ R,

where

co[fi(xi)] =

min{f −

i (xi), f
+

i (xi)},max{f −

i (xi), f
+

i (xi)}

.

For later discussion, we always assume that di(t), aij(t), bij(t),
Ji(t), τj(t) (i, j ∈ N) are continuouslyω-periodic functions in R and
di(t) > 0(i ∈ N) for t ∈ R.Moreover, for all j ∈ N, the time-varying
transmission delay τj(t) is continuous function satisfying

0 ≤ τj(t) ≤ τ (here τ = max
1≤j≤n

{ sup
t∈[0,ω]

τj(t)}

denotes a nonnegative constant).
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