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a b s t r a c t

In this paper we introduce a simple and efficient extension of the Extreme Learning Machine (ELM)
network (Huang et al., 2006 [19]), which is very robust to label noise, a type of outlier occurring in
classification tasks. Such outliers usually result from mistakes during labeling of the data points (e.g.
misjudgment of a specialist) or from typing errors during creation of data files (e.g. by striking an
incorrect key on a keyboard). The proposed variant of the ELM, henceforth named Robust ELM (RELM), is
designed using M-estimators to compute the output weights instead of the standard ordinary least
squares (OLS) method. We evaluate the performance of the RELM using batch and recursive learning
rules, and also introduce a model selection strategy based on Particle Swarm Optimization (PSO) to find
an optimal architecture for datasets contaminated with non-Gaussian noise and outliers. By means of
comprehensive computer simulations using synthetic and real-world datasets, we show that the
proposed Robust ELM classifiers consistently outperforms the original version.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a class of supervised feedforward neural net-
work model introduced by Huang and colleagues [17,19], called
Extreme Learning Machine (ELM), has attracted a great deal of
attention from the machine learning community [30–34,14,45,8].
All this interest in ELM seems to be primarily motivated by the
very fast way it is trained, without resorting to a long and tedious
learning process, such as that required by the error backpropaga-
tion algorithm.

More specifically, an important feature of the ELM is that the
input-to-hidden-layer weights are randomly chosen, i.e. the input-
to-hidden transformation imposed to the input vectors is in fact a
random mapping. This characteristic allows the hidden-to-output-
layer weights to be computed via a simple batch learning scheme,
such as the standard ordinary least squares (OLS) method [37],
although sequential learning schemes, such as the least mean
squares (LMS) algorithm [41] or the recursive least squares (RLS)
algorithm [29], have also been proposed.

Despite the fact that several authors have been successfully
applying the ELM to a number of complex pattern classification
and regression problems, it should be noted that these works have

not consistently addressed the issue of model performance in the
presence of outliers, which are instances considered to be exogen-
ous to the input–output data model actually learned for the task of
interest. In other words, outliers do not belong to (or are not
generated by) the actual process that give rise to the data.

The design of outlier-robust machine learning methods is a
complex research topic where sparse contributions in the field of
neural networks can be found, including proposals for designing
Radial Basis Functions (RBF) networks [25,26], echo-state net-
works [28], and even one for ELM networks [14]. However, these
few works have addressed the issue of robustness to outliers only
for regression problems, not for pattern classification.

Outliers in classification problems can be roughly distin-
guished as attribute (i.e. feature) noise, or class (i.e. label) noise
[44]. Attribute noise affects the observed values of the input
patterns during the measurement process. Class noise in its turn
changes the labels assigned to instances, e.g. by incorrectly
setting a positive label on a negative instance in binary classifica-
tion scenario. It is worth mentioning, however, that despite the
growing interest in outlier-robust classification techniques (see
[12] for a recent survey of such techniques), outliers often go
unnoticed because pattern classification is being more and more
automatically executed by computers, without careful inspection
or screening. Thus, it urges to implement techniques that can
handle them suitably, either by previously elimination from the
training data or by reduction of their consequences if training
data are unreliable.
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While outlier removal tends to improve the quality of the data
modeling in both regression [38] and classification tasks [1], it may
end up destroying important information in the data that the user
are not aware of. For instance, a small cloud of points appearing in
a region previously uncovered with data may look like initially as
outliers, but as more points populate that region as time goes by,
this cloud may acquire informative meaning, since its occurrence
may be due to parameter drift phenomenon [2] or to a novel (i.e.
previously unmodeled) data cluster/class.

Bearing this in mind, we argue that a better approach is to
handle outliers automatically by designing robust learning rules.
For this purpose, it is important to understand that a common
feature shared by the aforementioned learning rules (i.e. OLS, LMS
and RLS) is optimality only under the assumption of Gaussianity of
the error distribution. However, the presence of attribute and/or
label noise in the data causes the error distribution to depart from
Gaussianity and hence the classifier performance deteriorates
considerably. Thus, we aim at introducing outlier-robust exten-
sions of the ELM capable of handling outliers efficiently. The
proposed variants of the ELM classifier, henceforth named Robust
ELM (RELM) classifiers, will be designed using M-estimators to
compute the output weights instead of the standard OLS/LMS
algorithms.

M-estimation is a broad robust statistics framework
[21,37,3,38] widely used for parameter estimation in regression-
like problems, such as adaptive filtering, dynamical system identi-
fication, time series prediction and function approximation, when
the Gaussianity assumption for the prediction errors (i.e. residuals)
does not hold. Despite being a classical approach to handle outliers
in regression, the possibility of extending the M-estimation frame-
work to the context of neural network based robust pattern
classification have not been addressed so far. This can be con-
firmed by analyzing the contributions listed in the recent survey
by Frenay and Verleysen [12], who do not list the M-estimation
framework as one of the robust approaches to handle label noise.

More specifically, we comprehensively evaluate the perfor-
mances of the resulting RELM classifiers using both batch and
recursive learning rules, and also introduce a model selection
strategy based on Particle Swarm Optimization (PSO) [22] to find
an optimal architecture for datasets contaminated with non-
Gaussian attribute or label noise. By means of comprehensive
computer simulations using synthetic and real-world datasets, we
show that the proposed Robust ELMs consistently outperforms
their original versions.

The remainder of the paper is organized as follows. In Section
2, we briefly review the fundamentals of ELM in the context of
pattern classification. Then, in Section 3 we describe the basic
ideas and concepts behind the M-estimation framework. In this
section we also introduce two robust variants of the ELM classifier
and a PSO-based model selection strategy for inducing a Robust
ELM classifier. In Section 4 we present the computer experiments
we carried out using synthetic and real-world datasets and also
discuss the achieved results. The paper is concluded in Section 5.

2. Fundamentals of the ELM network

Let us assume that N data pairs fðxn;dnÞgNn ¼ 1 are available for
building and evaluating the model, where xnARp is the n-th p-
dimensional input pattern and dnARC is the corresponding target
class label, with C denoting the number of classes. For the labels,
we assume an 1-of-C encoding scheme, i.e. for each label vector dn,
the component whose index corresponds to the class of pattern xn

is set to “þ1”, while the other C�1 components are set to “�1”.
Then, let us randomly select N1 (N1oN) training data pairs

from the available data pool and arrange them along the columns

of the matrices D and X as follows:

X¼ ½x1 x2j j⋯ xN1 � and D¼ ½d1 d2
�� ��⋯�� ��dN1 �: ð1Þ

where dimðXÞ ¼ p� N1 and dimðDÞ ¼ C � N1.
The ELM is a single-hidden layer feedforward network (SLFN),

proposed by Huang et al. [19,16], whose weights from the inputs to
the hidden neurons are randomly chosen, while only the weights
from the hidden neurons to the output are analytically deter-
mined. Consequently, ELM offers significant advantages such as
fast learning speed, ease of implementation, and less human
intervene when compared to more traditional SLFNs, such as the
Multilayer Perceptrons (MLP) and RBF networks. For a network
with p input units, q hidden neurons and C outputs, the i-th output
for the n-th input pattern is given by

yin ¼ βT
i hn; ð2Þ

where βiARq; i¼ 1;…;C, is the weight vector connecting the
hidden neurons to the i-th output neuron, and hnARq is the
vector of hidden neurons’ outputs for the n-th input pattern
xnARp. The vector hn itself is defined as

hn ¼ ½f ðwT
1xnþb1Þ;…; f ðwT

qxnþbqÞ�T ; ð3Þ
where bl, l¼1,…,q, is the bias of the l-th hidden neuron, wlARp is
the weight vector of the l-th hidden neuron and f ð�Þ is a sigmoid
activation function. The weight vectors wl are randomly sampled
from either a uniform or normal distribution.

Let H¼ ½h1 h2 ⋯ hN1 � be a q� N1 matrix whose N1 columns are
the hidden-layer output vectors hnARq, n¼ 1;…;N1, where N1 is
the number of available training input patterns. Then, let
D¼ ½d1 d2 ⋯ dN1 � be a C � N1 matrix whose n-th column is the
target vector dnARC associated with the input pattern xn,
n¼ 1;…;N1. Finally, let β¼ ½β1 β2 ⋯ βC � be a q�C matrix, whose
i-th column is the weight vector βiARq, i¼ 1;…;C.

Thus, these three matrices are related by the following linear
mapping:

D¼ βTH; ð4Þ
where the matrices D and H are known, while the weight matrix β
is not. The OLS solution of the linear system in Eq. (4) is given by
the Moore–Penrose generalized inverse [13] as

β¼ HHT
� ��1

HDT : ð5Þ

Eq. (5) can be split into C individual estimation equations, one
for each output neuron i, being written as

βi ¼ HHT
� ��1

HDT
i ; i¼ 1;…;C; ð6Þ

where Di denotes the i-th row of matrix D.
In several real-world problems the matrix HHT can be singular,

impairing the use of Eq. (5). In fact, a near singular HHT (yet
invertible) matrix is also a problem, because it can lead to
numerically unstable results. To avoid both problems, a common
approach involves the use of the ridge regression method (a.k.a.
Tikhonov regularization) [18,6], which is given by

βi ¼ ðHHT þλIÞ�1HDT
i ; i¼ 1;…;C; ð7Þ

where the constant λ40 is the regularization parameter.
It is worth mentioning that the OLS estimation rules shown in

Eqs. (6) and (7) require the storage of all N1 training input vectors
and the corresponding target vectors in order to estimate the
output weight vectors βi. However, in some applications, such as
channel equalization and recursive identification, adaptive (i.e.
sequential) learning rules are a better option, where the vector of
parameters βi is modified following the arrival of each input
pattern [24,29]. The input pattern is then discarded after being
used for updating the parameters. Also, a common requirement for
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