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As an indispensable part of memristive synaptic weights, the switching jumps can induce instability,
oscillation or even chaos to the memristive network system. Based on the available information of the
switching jumps, this paper is concerned with the stochastic exponential synchronization of a class of
memristive neural networks with multiple time-varying delays. By using stochastic differential
inclusions and Lyapunov stability theory, discontinuous state feedback controller which depends upon
the switching jumps is proposed. Compared with the previous state feedback scheme, more information
of memristive synaptic weights is used to design the synchronous controller which ensures the
stochastic exponential synchronization of considered networks. When the information of switching
jumps is incomplete, discontinuous adaptive controller which is independent of the switching jumps is
also designed, thus the applicability of synchronization is broadened. A numerical example is provided
to illustrate the effectiveness and potential of the proposed design techniques.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Memristor was first theoretically predicted by Chua in 1971 [1].
In late 2008, Hewlett-Packard research team unveiled a two-
terminal titanium dioxide nanoscale device that exhibited mem-
ristive characteristic [2]. According to the amount, direction and
duration of charges passing through it, the resistance of memristor
would change. In this way, the memristor remembers information.
This new device will be helpful for low-power computation and
storage to store information and data without the need of power
[3,4]. The nonvolatile nature of memristors makes them an attr-
active candidate for the next-generation memory technology.

Chua also pointed out that the behavior of memristor is some-
what similar to the synapses in the brain [1]. It is the memory that
memristors can be used to simulate biological synapses. By replacing
the resistors in the primitive recurrent neural networks with mem-
ristors, memristive neural networks (MNNs) were developed in
[5-9]. In fact, MNNs are a class of switched nonlinear systems, in
which the switching signals depend on the neural states. Compared
with traditional electronic neural networks, the nonlinear properties

“This work was supported by the National Natural Science Foundation of China
(Grant nos. 61473070, 61433004), the Fundamental Research Funds for the Central
Universities (Grant nos. N130504002 and N130104001), and SAPI Fundamental
Research Funds (Grant no. 2013ZCX01).

* Corresponding author.

E-mail addresses: dingsanbo@163.com (S. Ding),
zhanshan_wang@163.com (Z. Wang).

http://dx.doi.org/10.1016/j.neucom.2015.03.069
0925-2312/© 2015 Elsevier B.V. All rights reserved.

of MNNs are more complex. One main reason for the complexity of
MNNSs may lie in the threshold sensitive memristor with a nonlinear
drift effect [7]. Recent research has a number of promising results of
MNNs [10-27].

Recently, chaotic synchronization of MNNs has gained much
attention due to its strong applications in diverse areas. In particular,
the authors in [14,15,19] showed that memristive chaotic system is
more safe in secure communications. Unlike the traditional recurrent
neural networks [28-31], MNN is a state-dependent switch system.
The drive system and response system may switch asynchronously
because of their different states. In other words, the synaptic weights
of drive system and response system may be nonidentical before
achieving synchronization. Thus, the synchronization control of
MNNs is much more complicated than that of tradition electronic
neural networks. By employing the differential inclusions, some syn-
chronization criteria for a class of MNNs were established in [19-25].
However, almost all the mentioned results neglected the influence of
switching jumps on controller. As an indispensable part of memris-
tive synaptic weights, switching jumps can induce instability, oscilla-
tion or even chaos to the memristive network system. Obviously, its
importance has not aroused the attention of researchers. Taking the
evolution of stability analysis of recurrent neural networks for exa-
mple, it has experienced a process from delay-independent criteria to
delay-dependent ones [32,33]. The research into the stability and
synchronization of MNNs will inevitably experience a homologous
developing process that switching jumps independent criteria will
be extended to switching jumps dependent ones. Thus, both the
switching jumps dependent controller and the switching jumps
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independent controller are designed in this paper. Each controller
has its own advantages.

On the other hand, a real system is usually replaced by non-
deterministic one because of the random uncertainties such as
stochastic forces on physical systems and noisy measurements
caused by environmental uncertainties [34-36]. This should be also
the case for MNNs. For instance, a class of MNNs with stochastic
perturbation has been formulated in [11]. However, to the best of
our knowledge, there is no research on the stochastic synchroniza-
tion of MNNs in the existing literature. Motivated by the earlier
discussions, our objective of this paper is to study the stochastic
synchronization control problem of MNNs. The main contributions
of this paper can be summarized as follows:

(1) Both multiple time-varying delays and stochastic perturba-
tion are considered in this paper. By utilizing sign function,
discontinuous state feedback controller is designed such that the
considered networks can realize stochastic exponential synchro-
nization in p-th moment. Moreover, this controller depends upon
the switching jumps.

(2) Discontinuous adaptive controller is also established. This
controller is independent of the switching jumps and can be used
when the switching jumps are not well known.

(3) The proposed synchronization schemes are still feasible
when the derivative of time-varying delay is more than one.

Notation: Throughout this paper, [-,-] represents the interval.
cola, b] represents the closure of the convex hull generated by real
numbers a and b. €(—7,0],R) represents the Banach space of
continuous functions. max{-} and min{-} denote the maximum and
minimum values, respectively. Let (£2, &, ) be a complete prob-
ability space with natural filtration {&},., E{-} stands for the
mathematical expectation operator with respect to the given
probability measure .

2. Model description and preliminaries

Now,we consider the following MNN model with different mul-
tiple time-varying delays:
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where x;(t) denotes the state variable of the ith neuron at time t;
It) is the external input to the ith neuron, 7(t) is the time-
varying delay with 0 < 7;(t) < 7; N denotes the number of delayed
connection weights; f; and g; are the activation functions; d;(x;(t)),
a;i(x;(t)), bg»(x,'(t—rk,-(t))) represent memristive synaptic weights,
respectively. Referring to the works in [11-15,22-25], we let
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in which switching jumps T; >0, d; >0, d, > 0, Ty, a; ES Qg are
constants. The initial conditions of system (1) are given by x;(t) =
D) e €[—7,0LR), i=1,2,....n.

In this paper, we consider system (1) as the drive system, the
response system with stochastic perturbation is designed as
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where y;(t) is the state of the response system with initial
conditions y;(t) = @;(t) € €([—7,0],R), e;j(t) =y;(t) —x;(t) is the syn-
chronization error signal; u;(t) is the controller to be designed; h;;
is the noise intensity function; wj(t) is a Brownian motion defined
on a complete probability space (€2, F,B) satisfying E{dw;(t)} =0
and [E{da)jz(t)} =dt, and
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Remark 2.1. In systems (1) and (2), we assume that the memris-
tive synaptic weights b:-]‘-(~) are closely related to the time-varying
delays. This is because that the switching of synaptic weights may
also be affected by the time delays in delayed MNN system. For
this reason, some homologous MNN models have been con-
structed in [10,19,21], and some stability and synchronization
conditions have been established, respectively. However, to the
best our knowledge, there is no research on the stochastic exp-
onential synchronization issue for MNNs with multiple time-var-
ying delays and stochastic perturbation.

Let df =min{d;,d;}, di*=max{d,.d;}, af=min{ady}, ai*=
max{a,, ag), b = min{Qg,Eg}, b = max{gg,ﬁg}. By applying the
theories of set-valued maps and stochastic differential inclusions
[10-13], from (1) and (2), we have
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