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a b s t r a c t

In this paper we consider a recurrent neural network model consisting of two neurons and analyze its
stability using the associated characteristic model. In order to analyze the multiple quasi-periodic orbits,
the strong resonance of this system, in particular that known as the R2 bifurcation, is also studied. In the
case of two neurons, one necessary condition that yields the bifurcation is found. In addition, the
direction of the R2 bifurcation is determined by applying normal form theory and the center manifold
theorem. The simple conditions for ensuring the existence of multiple quasi-periodic orbits are given.
The strong resonance phenomenon is analyzed using numerical simulations and is related with the
codimension-two bifurcation of the high-iteration map.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this paper is to present certain results on the
analysis of the dynamics of a recurrent neural network. The
particular network in which we are interested is the Williams–
Zipser network, also known as a discrete recurrent neural network
in [1]. Its two-neuron state equation is

x1ðkþ1Þ ¼ f ðw11x1ðkÞþw12x2ðkÞÞ ð1aÞ

x2ðkþ1Þ ¼ f ðw21x1ðkÞþw22x2ðkÞÞ; ð1bÞ

where xiðkÞ is the ith neuron output, wij are the weight factors of
the neuron outputs, and f ð�Þ is a continuous, bounded, monotoni-
cally increasing function, such as the hyperbolic tangent.

From the point of view of dynamic system theory, it is
interesting to study the equilibrium or fixed points. The dynamics
at these points do not change in time. Their character or stability
determines the local behavior of nearby trajectories. A fixed point
systems can attract (sink), repel (source) or have directions of
attraction and repulsion (saddle) of close trajectories [2,
Chapter 3]. Besides fixed points, there exist periodic trajectories,
quasi-periodic trajectories or even chaotic sets, each with its own
stability characterization. All of these features are similar in a class
of topologically equivalent systems [3, Chapter 2]. With respect to
recurrent neural networks as systems, several dynamics-related
results are available in the literature. The most general result is
derived in Marcus and Westervelt [4] using the Lyapunov stability

theorem. They establish that the only stable equilibrium states
that can exist for a symmetric weight matrix are either fixed
points or period-two cycles. More recently, Cao [5] proposed less
restrictive but more complex conditions. Wang [6] describes an
interesting type of trajectory, the quasi-periodic orbits. Passeman
[7] obtains some experimental results, such as the coexistence of
periodic cycles, chaotic attractors and quasi-periodic trajectories.
In [8], Tino gives the position, number and stability types of fixed
points for a two-neuron discrete recurrent network with non-zero
weights.

The rest of this paper is divided into four additional sections.
Section 2 consists of an introduction to bifurcation theory. In Section 3,
the local stability of the recurrent neural network and the necessary
conditions for the onset of the R2 strong resonance bifurcation are
analyzed. In Section 4, conditions for the direction of the bifurcation
and for the existence of quasi-periodic orbits are established. In Section
5, we show the bifurcation diagram and dynamic behavior simulations
of the network with the hyperbolic tangent as the activation function.

2. Bifurcation theory overview

In general, when system parameters are slowly changed, the
system dynamics varies smoothly. Those dynamics belong to the
same class of topologically equivalent systems. Sometimes, the
variation of parameters can reach a critical point at which it is no
longer topologically equivalent. This is called a bifurcation point [9,
Chapter 3], and the system will exhibit new behaviors. In order to
determine the new dynamics associated to the bifurcation point,
normal form theory is a useful tool [9, Chapter 2]. This theory is a
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technique for transforming the nonlinear dynamical system in
critical situation into certain simple standard forms known as
normal forms of the bifurcation. In fact, the dynamical behavior of
these forms is known and the dynamical system is locally
topologically equivalent to them on the bifurcation point. The
simplest bifurcations are those associated with the fixed points of
the system under analysis. These bifurcations occur at certain
critical eigenvalues of the linearized equivalent system at the fixed
point. If the bifurcation is characterized by a one-dimensional
manifold in parameter space is called a codimension-one bifurca-
tion. More generally, the codimension of a bifurcation is the
number of parameters which must be varied for the bifurcation
to occur. The three simplest codimension-one bifurcations in
discrete-time systems are known as Neimark–Sacker, fold and
period-doubling which appear when one eigenvalue is �1, þ1
and a pair of complex conjugate eigenvalues have a unit modulus,
respectively [9, Chapter 4]. The Neimark–Sacker bifurcation is
related with an interesting dynamical behavior characterized by
the presence of one quasi-periodic orbit. The periodicity of this
particular trajectory is irrational, that makes that the set of points
it traverses looks like a continuous closed orbit. In the bifurcation
curve exist some points where the periodicities of trajectories are
rational and appears as a new codimension-two bifurcation. The
nomenclature of this rational periodicity is represented by q : p,
this number indicates that in p mapping iterations, the state
completes q revolutions. This terminology is related to the phase
locking phenomenon [9, Chapter 7] (also called entrainment or
synchronization). Phase locking produces a periodic solution that
persists generically as parameters are varied. In contrast, quasi-
periodicity is a codimension-one phenomenon, which is thus
generically destroyed by perturbation. The result is a well-
known bifurcation diagram in the two-parameter plane called
the “Arnold tongue” scenario [9, Chapter 7]. The Arnold tongues
are situated next to the unit circle, where the rotational number
[2] is constant and rational and has a value of p/q, and is
surrounded by zones in which it is irrational. For example, in an
integrate-and-fire continuous-time neural network model with
sinusoidal input, the rational q : p mode-locked solution is identi-
fied by a spike train in which p firing events occur in period qf,
where f is the forcing input period. In general, codimension-two
bifurcations are related with two critical eigenvalues. For example,
the rotational number mentioned above is rational then appears a
codimension-two bifurcation with the following condition with
respect to the eigenvalues:

λ1;2 ¼ e7 iθ0 ; θ0 ¼
2πp
q

:

These bifurcations are known as resonances or strong reso-
nances and they are related with the destruction of quasi-periodic
orbits associated to Neimark–Sacker bifurcations. In particular, the
R2 bifurcation is a resonance represented by the rotational number
1:2. In fact, for neural network (1), the numerical simulations on
Arnold tongues [10] conclude that the most important Arnold
tongue is associated with a 1:2 rotational number, that is, the most
frequent resonance is 1:2. Additionally, in R2 resonance the most
interesting dynamical behavior is the presence of multiple quasi-
periodic orbits under some conditions of normal form coefficients
(see Section 4). With respect to the analysis of bifurcations in
neural networks there exist some previous studies. Refs. [11,12]
study the discrete-time Hopfield neural network and specifically,
their Neimark–Sacker bifurcation and the stability of the asso-
ciated quasi-periodic orbit. In [10], a simple stability condition for
the Neimark–Sacker bifurcation in a two-neuron discrete recur-
rent neural network is given and the Arnold tongues (related to
the phase-locking phenomenon) are studied. In [13], numerical
estimates of the Neimark–Sacker bifurcation direction in a

Hopfield neural network with two neurons and one time delay
are given. Refs. [14,15] complete the bifurcation results for two-
neuron discrete-time Hopfield neural networks with time delay
and only self-connections between the neurons (no interactions
between them). In [16,13,17], results are generalized to n-neuron
Hopfield neural networks. In [18], the discrete-time dynamics of a
two-neuron network with recurrent connectivity, known as ring
neural networks, are studied, showing for specific parameter
configurations the relationship between dynamics and the evolu-
tion of the external outputs. In [19], the authors consider a system
of delayed differential equations representing a simple model for a
ring of neurons with some restrictions on the parameters, giving
the geometric locus in parameter space that results in a Hopf
bifurcation. In [20], a discrete neural network with two neurons is
considered and the period-doubling bifurcation is analyzed. In this
paper the stability of the bifurcation focuses on the zero fixed
point. In contrast, [21] studies the saddle-node, pitchfork and Hopf
bifurcations in a recurrent neural network. Additionally, Guo [16]
presents some results for a codimension-two bifurcation ring
neural network. Finally, Folias and Ermentrout [22] analyze the
strong resonance (1 : 2) of a biological neural network model.
With regard to these references, this paper introduces the study of
period-doubling at fixed points different from zero, and also
includes novel results for strong resonance in high-iteration maps
of Hopfield discrete neural networks. Generally, the typical pro-
cedure is to analyze the quasi-periodic orbit associated with the
Neimark–Sacker bifurcation [16,13,17,10], or to propose conditions
for the non-existence of said quasi-periodic orbits by ensuring that
the system has fixed stable points [5]. The main novelty of this
paper with respect to previous studies is the analysis of multiple
quasi-periodic orbits and the destruction process of a quasi-
periodic from a numerical simulation approach. Additionally, we
show the relationships with the codimension-two bifurcation of
the high-iteration map in R2 strong resonance.

3. Local stability and resonance bifurcation conditions

In the exposition below, a two-neuron neural network is
considered. It is usual for the activation function to be a sigmoid
function or a tangent hyperbolic function. Here we only need the
following assumption:

f AC1ðRÞ; f ð0Þ ¼ 0; f 0ð0Þa0; ðH:1Þ
where C1ðRÞ is the functions set with continuous first derivative.

In order to simplify the notation we denote (x1, x2) as (x; y).
First, the analytical condition of a fixed point can be shown as

x¼ f ðw11xþw12yÞ ð2aÞ

y¼ f ðw21xþw22yÞ: ð2bÞ
Taking into consideration assumption (H.1), it is clear that (0,0) is a
fixed point.

Introducing the new variables σ1 and σ2, which depend on the
diagonal weights and the weight matrix determinant, we have

σ1 ¼
w11f

0ðf �1ð0ÞÞþw22f
0ðf �1ð0ÞÞ

2
ð3Þ

σ2 ¼ jW j f 0ðf �1ð0ÞÞ2: ð4Þ
The Jacobian matrix of the linearized system evaluated at the fixed
point is

A¼ w11f
0ðf �1ð0ÞÞ w12f

0ðf �1ð0ÞÞ
w21f

0ðf �1ð0ÞÞ w22f
0ðf �1ð0ÞÞ

" #
ð5Þ
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