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a b s t r a c t

This paper presents an identifying function (IF) approach for determining parameter structure of
statistical learning machines (SLMs). This involves studying three related aspects: structural identifiability
(SI), parameter redundancy (PR) and reparameterization. Firstly, by employing the Rank Theorem in
Riemann geometry, we derive an efficient identifiability criterion by calculating the rank of the
derivative matrix (DM) of IF. Secondly, we extend the previous concept of IF to local IF (LIF) for
examining local parameter structure of SLMs, and prove that the Kullback–Leibler divergence (KLD) is
such a proper LIF, thus relating the LIF approach to several existing criteria. Lastly, an analytical approach
for solving minimal reparameterization in parameter-redundant models is established. The dimension-
ality of the minimal reparameterization can be used to characterize the intrinsic parameter dimensionality
of model. We compare the IF approach with existing criteria and discuss its pros/cons from theoretical
and application viewpoints. Several model examples from the literature are presented to study their
parameter structure.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Learning machines such as neural networks and support vector
machines have been widely applied to a variety of scientific areas. As
[1–3] show, it is useful to describe learning machines as a family of
probability density functions (PDFs). For example, from the statistical
viewpoint, the least squared learning in neural networks can be
interpreted as nonlinear regression which approximates the condi-
tional expectation of the output given an input, and the resulting
least squared estimator is equal to the maximum likelihood estima-
tor [1,3]. While in support vector machines for classification, the
exponential of negative hinge loss can be interpreted as a Gaussian
scale mixture; this in turn opens the door to Bayesian methods for
setting the hyper-parameters of the original model parameters [4], to
just name a few. For a detailed statistical treatment in machine
learning models, one can see [1–3] and the references therein. The
statistical perspective is clearly an effective one which provides deep
insight into machine learning methods. For stressing on the statistical
modeling nature, in this study, we call such models statistical learning
machines (SLMs).

Structural identifiability (SI) is concerned with theoretical uniq-
ueness of model parameters determined from an underlying
statistical family [5–7]. In a general sense the SI is just one aspect
of a larger problem, the inverse problem [8], which basically
encompasses SI and identification (e.g., objective function, reg-
ularization, and learning algorithm). For a rigorous treatment of SI
problem, one should distinguish between the concepts of global
identifiability and local identifiability. Roughly speaking, an SLM is
said to be globally identifiable if different parameter values lead to
different PDFs throughout the parameter space; it is said to be
locally identifiable if there exists a small distance such that any two
parameters giving the same PDF must be separated at least by that
distance [5–7]. Parameter redundancy (PR) occurs if the model can
be rewritten in terms of a smaller set of parameters [9]. The
concept that intimately relates to SI and PR is parameter depen-
dence (PD) in the sense that a certain subvector of parameter can
be expressed as the function of the remaining one [10].

Besides being an important way to enhance model transparency
and comprehensibility [11,12], the SI is also a necessary prerequisite
for system modeling and parameter estimation [13]. Typically, if an
SLM has hierarchial structures [17,18], latent variables [1,16], state
variables [13], nuisance parameters [19] or coupled submodels
[11,12], the model may be unidentifiable. Due to the universal
existence of nonidentifiability, Watanabe pointed out that “almost
all learning machines are singular” [18]. Moreover, the SI issue has a
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close connectionwith a range of subjects such as variational Bayesian
matrix factorization [14], low-rank matrix completion [15], latent
factor model [16], and probabilistic PCA [1]. The utility and impor-
tance of SI study can be further recognized in, e.g., physically
interpretable (sub-) models [11–13,20], singular learning theory
[18,21,22], statistical inference [5,17,22], and learning algorithm and
learning dynamics [17,23]. Therefore, it is of special importance to
study SI in the field of machine learning.

In this paper, we report an extension of existing investigations
on determining parameter structure of SLMs in the following two
directions:

� SI analysis: In our previous studies, Yang et al. [11,12] considered
the SI problem in generalized-constraint neural network model,
and derived identifiability theorems for Single-input Single-output
(SISO) and Multiple-input Single-output (MISO) models. However,
their theorems cannot deal with Multiple-input Multiple-output
(MIMO) models. In [24], Ran et al. derived the identifiability result
for MIMO models. For a detailed description of relevant results,
one can see [11,12,24] and the references therein. Hence, this
paper is a further investigation built upon [10–12,24,26], and we
expect to link the present study to existing criteria, thus providing
a deeper insight into SI theory.

� PR and reparameterization: We develop an analytical method
for reparameterization when PR is detected, and show that the
dimensionality of the resulting minimal reparameterization can
be used to characterize the intrinsic parameter dimensionality of
model. Compared with the method in [9] which is applicable
for exponential family, the present method is workable in more
generic statistical settings. Moreover, it processes reparameter-
ization in a global way, while the method in [5] is merely a local
one as it is based on examining local identifiability. Therefore,
this paper is an extension of [5,9], and we further expect to
study the PR problem from a wider range of models.

The goal of this paper is to present a systematic treatment for
determining parameter structure of SLMs. To this end, we start by
making use of the existing concept of identifying function (IF) [5] to
give an efficient identifiability criterion with the help of the Rank
Theorem in Riemann geometry [29]. The key idea is to transform the
SI problem into the problem of examining the injectivity of the
mapping IF. The derived method works by calculating the rank of the
derivative matrix (DM) of IF. Then, we extend the definition of IF to
local identifying function (LIF) for determining local parameter struc-
ture of SLMs, and prove that the Kullback–Leibler divergence (KLD) is
such a proper LIF. We further demonstrate that several well-
established criteria, such as Fisher Information Matrix (FIM) [7],
Kullback–Leibler divergence equation (KLDE) [6], and local least
squared (LLS) [27], can be directly derived from the LIF theme, thus
revealing the common basis underpinning these identifiability cri-
teria. Lastly, an analytical method for reparameterization by con-
structing functionally independent (see Definition 10) parametric
functions is established. It is worth noting that the procedure can
be implemented in a step-by-step manner.

The main contribution of this paper is given from the following
two aspects:

1. Based on the IF theme, by employing the Rank Theorem in
Riemann geometry, we derive an efficient identifiability criter-
ion. Moreover, we extend the previous definition of IF to LIF for
determining local parameter structure of SLMs, and prove that
the KLD is such a proper LIF.

2. Based on the DM of IF, we develop an analytical method for
reparameterization when PR is detected, and show that the
dimensionality of the minimal reparameterization can be used
to characterize the intrinsic parameter dimensionality of model.

The remainder of this paper is organized as follows. Section 2
introduces the basic concepts and reviews the existing methods. In
Section 3, we present an IF approach for dealing with SI problem, and
extend the previous definition of IF to LIF for studying local parameter
structure of SLMs. In Section 4, based on the IF approach, we study
the PR problem and present an analytical method for reparameter-
ization. In Section 5, several model examples from the literature are
presented to examine their parameter structure. Section 6 concludes
this paper and points out the direction for future work.

2. SI analysis: basic concepts and existing methods

Let pðyjx; θÞ be the conditional PDF of an output yARm for a
given input xARn and a parameter θARk. Here pðyjx; θÞ is referred
as a learning machine [22]. For highlighting the statistical modeling
nature, the model in this study is called an SLM. The SI analysis for
SLMs is concerned with theoretical uniqueness of model parameters
determined from a family of underlying PDFs. Formally, the SI is
defined in terms of the mapping θ↦pðyjx; θÞ being one-to-one. Let
pðxÞ be the PDF of x, which is positive for almost everywhere (a.e.)
xARn, z¼ ðx; yÞ and pðz; θÞ ¼ pðx; y; θÞ ¼ pðxÞpðyjx; θÞ be the joint
PDF of x and y, the SI can be equivalently defined as the mapping
θ↦pðz; θÞ being one-to-one. For many application scenarios, the PDF
pðz; θÞ can be replaced by the characteristic function of z (the Fourier
transformation of pðz; θÞ) since the correspondence between a PDF
and its characteristic function is one-to-one [31]. In the present
paper, a special emphasis is placed on nonlinear SLM which is
nonlinear with respect to its unknown parameter vector. Hereafter,
for notational simplicity, the SLM is denoted by the probability
measure [31] Pθ and will be interchangeably used with its PDF pðz; θÞ.

Following [5–7], we give the following definitions.

Definition 1. An SLM Pθ is globally identifiable if Pθ1 ¼ Pθ2 ) θ1 ¼
θ2; 8θ1; θ2ARk. An SLM is locally identifiable if for every θARk,
there is an open neighborhood NðθÞ of θ such that
Pθ1 ¼ Pθ2 ) θ1 ¼ θ2; 8θ1; θ2ANðθÞ.

If a parameter point αARk is of particular interest, for example,
α is assumed to be the real value (or critical value) of the model
parameter, we give the following definition.

Definition 2. An SLM Pθ is globally identifiable at α if Pθ ¼ Pα;

θARk ) θ¼ α. An SLM is locally identifiable at α if there is an
open neighborhood NðαÞ of α such that Pθ ¼ Pα; θANðαÞ ) θ¼ α.

As a matter of fact, the statements in Definition 1 and 2 can be
relaxed to hold with an exception of a subset of zero measure in
parameter space, since there may exist a manifold of atypical
parameters which constitutes a zero-measure subset [33,34]. For
example, consider the model y¼ θ1f ðθ2xÞþϵ, where f is a nonlinear
function, the noise ϵ�N ð0;1Þ and parameter θ¼ ðθ1; θ2ÞAR2, all the
parameters in the manifold fð0; θ2Þ : θ2ARg give rise to the same PDF.
However, the model is globally identifiable in usual dominated
situations because this manifold is a zero-measure subset in the
parameter space. This type of singularity can also be exemplified by
familiar learning machines, such as multi-layer perceptrons, Gaussian
mixtures, and radical basis function networks. For more details, one
can see [17] and the references therein.

Remark 1. It should be noted that the above relaxation does not
mean that the singularity in a zero-measure subset has no influence
at all in the study of machine learning. The importance of singularity
should not be underestimated but be emphasized. For example,
Watanabe et al. study the singular learning theory (e.g., training and
generalization error, and Bayesian inference) by using algebraic
geometry [18,21,22,35], whereas Amari et al. study the behavior of
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