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a b s t r a c t

In this paper, we propose a fast manifold learning strategy to estimate the underlying geometrical
distribution and develop the relevant mathematical criterion on the basis of the extreme learning
machine (ELM) in the high-dimensional space. The local tangent space alignment (LTSA) method has
been used to perform the manifold production and the single hidden layer feedforward network (SLFN)
is established via ELM to simulate the low-dimensional representation process. The scheme of the ELM
ensemble then combines the individual SLFN for the model selection, where the manifold regularization
mechanism has been brought into ELM to preserve the local geometrical structure of LTSA. Some
developments have been done to evaluate the inherent representation embedding in the ELM learning.
The simulation results have shown the excellent performance in the accuracy and efficiency of the
developed approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the Era of Big Data, how to deal with the exponential explosive
growth of high-dimensional data turns out to be one of the most
challenging topics. The manifold learning has attracted a great deal
of interests in recent years. The intuition that high-dimensional data
are most likely to lie in or close to only a few intrinsic degrees of
freedom than the ambient dimension would suggest, it is probable
for us to estimate the geometrical properties of high-dimensional
data from relatively simple topology manifolds in the lower dimen-
sional space. Therefore, it is very important to discover and preserve
the intrinsic geometry structure of the raw data on the low-
dimensional subspaces [1].

As to the manifold learning, the classic linear dimension reduc-
tion techniques like principal component analysis (PCA) [2] and
linear discriminant analysis (LDA) [3] fail to discover the underlying
nonlinear manifold structure and preserve the local geometry.
Recently, progress has been made in developing efficient algorithms
to be able to learn the low-dimensional structure of nonlinear
manifolds. These proposed methods include isometric feature map-
ping (ISOMAP) [4], locally linear embedding (LLE) [5], Laplacian
eigenmap (LE) [6], Hessian LLE (HLLE) [7], and local tangent space

alignment (LTSA) [8,9]. Since LTSA is from the geometrical intuition
and straightforward to implement, it has received wide attention in
the nonlinear manifold learning [1,8,9]. However, one of the bottle-
necks comes from the computational speed, as LTSA needs to obtain
every eigenvalue and eigenvector when aligning the local tangent
coordinates in the local tangent space.

In the context of the machine learning, Artificial Neural Networks
(ANNs) have been playing the dominant roles because of its benefits
on generalization, flexibility, nonlinearity, fault tolerance, self-organi-
zation, adaptive learning, and computation in parallel. Recently,
extreme learning machine (ELM) has attracted more and more
attention in machine learning by providing the higher generalization
performance at a much faster speed [10,11]. ELM was originally
developed for the single hidden layer feedforward networks (SLFNs)
instead of the classical gradient-based algorithms [10–12], then
extended to the generalized SLFN that need not be the neuron alike
[13,14], and can work for the conventional SVM and its variants. The
essence of ELM is that when the input weights and the hidden layer
biases are randomly assigned, the output weights can be computed
by the generalized inverse of the hidden layer output matrix [10,11].
There are a great many ELM variations that have been proposed,
including the random hidden layer feature mapping-based ELM [15],
the Kernel-based ELM [15–17], the fully complex ELM [18], the
incremental ELM (IELM) [12–14], the online sequential ELM (OS-
ELM) [19–21], the pruning ELM (P-ELM, OP-ELM) [22,23], the circular-
ELM (C-ELM) [24], and ELM ensembles [25–28], which have led to the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.03.116
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: nianrui_80@163.com (R. Nian).

Neurocomputing 174 (2016) 18–30

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.03.116
http://dx.doi.org/10.1016/j.neucom.2015.03.116
http://dx.doi.org/10.1016/j.neucom.2015.03.116
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.03.116&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.03.116&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.03.116&domain=pdf
mailto:nianrui_80@163.com
http://dx.doi.org/10.1016/j.neucom.2015.03.116


state-of-the-art results in many applications both for the regression
[29,30] and for the pattern recognition problem [31–36].

In this paper, we come up with a fast and efficient manifold
learning approach for the high-dimensional data via ELM. We first
generate the underlying low-dimensional manifold coordinate by the
local tangent space alignment and then establish a set of SLFNs in the
ELM ensemble to simulate the entire process of manifold learning, and
the relevant mathematical criterion of the model selection will also be
developed for the performance improvements.

The rest of the paper is organized as follows: in Section 2, the
basic of the ELM is outlined. In Section 3, the local tangent space
alignment method will be briefly introduced. In Section 4, a fast
and efficient scheme for the low-dimensional manifold learning
via ELM is developed in detail. Section 5 is about the simulation
and result analysis, and Section 6 comes to the conclusions.

2. Basic ELM

So far, ELM learning has been developed to work at a much
faster learning speed with the higher generalization performance,
both in the regression problem and in the pattern recognition. For
the given N learning samples fxi; yigNi ¼ 1, where xi ¼ ½xi1; xi2;…; xin�T
and yi ¼ ½yi1; yi2;…; yim�T , the standard model of the ELM learning
can be written as the following matrix format:

Hβ¼ Y H xð Þ ¼ h1 h2 … hL
� �

¼
h1 x1ð Þ … hL x1ð Þ

⋮ hi xj
� �

⋮
h1 xNð Þ … hL xNð Þ

2
64

3
75

¼
g ω1 � x1þb1ð Þ … g ωL � x1þbLð Þ

⋮ g ωi � xjþbi
� �

⋮
g ω1 � xNþb1ð Þ … g ωL � xNþbLð Þ

2
64

3
75
N�L

β¼ ½β1; β2;…; βL�Tm�L; Y ¼ ½y1; y2;…; yN�Tm�N : ð1Þ
where ωi ¼ ½ωi1;ωi2;…;ωin�T ; i¼ 1; 2; …; L is the weight vector
connecting the ith hidden neuron and the input neurons,
βi ¼ ½βi1;βi2;…;βim�T is the weight vector connecting the ith
hidden neuron and the output neurons, ωi � xj denotes the inner
product of ωi and xj; j ¼ 1;2;…; N, and there are L hidden neurons
with the activation function gðxÞ. All kinds of the activation
functions can be chosen here, such as the Sigmoid function, the
hard-limit function, the Gaussian function, and the multiquadric
function.

If the activation function gðxÞ,ω and b are all set, the only learning
parameter will be β. Different from the traditional learning algorithm,
ELM tends to achieve the least training error and the least norm of
output weight together. According to Bartlett's theory [37], when the
feedforward neural networks get smaller training error, the norms of
weights are smaller, and the generalization performance of the
networks is better, β¼ arg minðJHβ�Y J2; JβJ Þ. In order to solve
the formation, both the standard optimization method and the
minimal norm least square method need to be adopted. The original
implementation of ELM will then be β¼HþY , where Hþ denotes the
Moore–Penrose generalized inverse of matrix H [10]. The orthogonal
projection method can be used here when HTH is nonsingular and
Hþ ¼ ðHTHÞ�1HT , or when HHT is nonsingular and Hþ ¼HT

ðHHT Þ�1. In addition, the resulting solution tends to be more stable
with better generalization performance by adding a positive value to
the diagonal of HHT or HTH [38].

3. The local tangent space alignment algorithm

The local tangent space alignment (LTSA) algorithm can mathe-
matically explore the underlying low-dimensional manifold in the

high-dimensional space by intuition. Let X ¼ X1; X2; …;XNf g � Rn be
the original input with N samples embedded in an n-dimensional
space which is actually drawn from an underlying m-dimensional
manifold. Let X i ¼ fXi1;Xi2;…;Xikg be denoted as the k neighbors
extracted by the K-nearest Neighbor (K-NN) method for each data
sample Xi, mrkoN. The basic model of LTSA is to find a set of
orthonormal bases U i ¼ fUi1; Ui2;…;Uimg � Rn by the following opti-
mization:

min
UT

i U i ¼ Im

Xk
j ¼ 1

‖Xij�Xi�U iU
T
i ðXij�XiÞ‖22; ð2Þ

where Xi is the center of X i; Xi ¼ 1=k
Pk

j ¼ 1 Xij; U i ¼ ½Ui1; Ui2;

…;Uim�ARn�m, and Im is the identity matrix of the order m.
Further, let ~Xi ¼ ½Xi1�Xi; Xi2�Xi;…;Xik�Xi� be denoted as a

centered matrix. Then by some algebraic deductions the above
optimization problem can be transformed into

max
UT

i U i ¼ Im
TrðUT

i
~Xi
~X
T
i U iÞ; ð3Þ

where Trð�Þ is short for the trace of the square matrix, i.e., the sum
of all the elements on the main diagonal (from upper left to lower
right) in the matrix.

It is clear to see that Ui1; Ui2;…;Uim are the eigenvectors of
~Xi
~X
T
i corresponding to the m largest eigenvalues. The local

coordinate of each neighbor Xij can then be formulated in the
approximated tangent space as aij ¼UT

i ðXij�XiÞ; j¼ 1;2;…; k so as
to obtain the local coordinate matrix Ai ¼ ½ai1; ai2;…; aik�;
i¼ 1;2;…;N.

The set of the global coordinate for the manifold T ¼ ft1; t2; …; tNg
can be acquired by an affine transformation Gi : aij- tij; j¼ 1;2;…; k.
The total error of the alignment is denoted as εðTÞ ¼ TrðTΦTT Þ, where
T ¼ ½t1; t2;…; tN �ARm�N is the global coordinate system of the low-
dimensional representation, and Φ¼ PN

i ¼ 1 PiViV
T
i P

T
i is the align-

ment matrix, Pi is a N � k selection matrix with TPi ¼ ½ti1; ti2;…; tik�,
i.e., Pi can select k elements of T , Vi ¼ ðIk�1k1

T
k=kÞðIk�Aþ

i AiÞ, 1k is a
k� 1 vector which has all ones and Aþ

i is the Moore–Penrose
generalized inverse: Aþ

i ¼ AT
i ðAiA

T
i Þ�1.

In this way, LTSA can be finally written as the following
optimization problem:

min
TTT ¼ Im

TrðTΦTT Þ: ð4Þ

where TTT ¼ Im is the constraints to uniquely determine T . Since
that the vector 1N of all ones is an eigenvector of Φ corresponding
to a zero eigenvalue, therefore, the rows of the low-dimensional
representation T are given by the eigenvectors ofΦ corresponding
to the second to the ðmþ1Þth smallest eigenvalues [1,8,9].

4. Fast manifold learning via ELM

4.1. General model

The basic idea here is that we feed the manifold production of
LTSA about the visual perception into the ELM architecture and
simulate the whole process in a faster way. It is found that, in the
human visual system, the visual layers share components that
provide common features encountered for all the visual tasks. Let
the original input X ¼ ½X1;…;Xq;…;XQ � in the training set consist
of Q classes, with each class Xq composed of R samples, i.e.,
Xq ¼ fxq1;…; xqr ;…; xqRg. After preprocessing, the normalized input
can be written as X0 ¼ ½x01; x02;…; x0N�ARn�N in an n-dimensional
space, N¼ R� Q . Let the normalized global coordinate of the
manifold for the input in the training set be represented as
T 0 ¼ ½t01; t02;…; t0N�ARm�N by LTSA. Once a set of SLFNs is reasonably
established via ELM leaning with the help of LTSA, the test set can
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