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a b s t r a c t

This research shows that inductive bias provides a valuable method to effectively tackle semi-supervised
classification problems. In the learning theory framework, inductive bias provides a powerful tool, and
allows one to shape the generalization properties of a learning machine. The paper formalizes semi-
supervised learning as a supervised learning problem biased by an unsupervised reference solution. The
resulting semi-supervised classification framework can apply any clustering algorithm to derive the
reference function, thus ensuring maximum flexibility. In this context, the paper derives the biased
version of Extreme Learning Machine (br-ELM). The experimental session involves several real world
problems and proves the reliability of the semi-supervised classification scheme.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Inductive bias is of fundamental importance in learning theory,
as it influences heavily the generalization ability of a learning
system [1]. From a mathematical point of view, the inductive bias
can be formalized as the set of assumptions that determine the
choice of a particular class of functions to support the learning
process. Therefore, it represents a powerful tool to embed the
prior knowledge on the applicative problem at hand.

In literature, modifications to the original Extreme Learning
Machine (ELM) [2] scheme have been proposed [3,4]. This paper
addresses the advantages and the issues of introducing an induc-
tive bias in the ELM when semi-supervised classifications pro-
blems are being tackled. In semi-supervised classification, one
exploits both unlabeled and labeled data to learn a classification
rule/function empirically [5]; the semi supervised approach
should improve over the classification rule that is learnt by only
using labeled data. The interest in semi-supervised learning has
increased recently, especially because application domains exist
(e.g., text mining, natural language processing, image and video
retrieval, and bioinformatics) [6,7], in which large datasets are
available but labeling is difficult, expensive, or time consuming.

Biased regularization provides a viable approach to implement
an inductive bias in a kernel machine, as confirmed by the
generalized 'Representer Theorem' [8]. Biased regularization of
Support Vector Machines (SVMs) has been adopted in [9] for a
personalized handwritten system and in [10] for a malware

detection system. Ivanov-like biased regularization was adopted
in [11] to shrink the generalization error bounds for SVMs under
the so called cluster hypothesis (see [12] for a very in depth
analysis). A similar result was obtained in the PAC Bayesian
framework [13].

The research presented here shows that semi-supervised
learning can benefit from biased regularization, too. First, a novel,
general biased-regularization scheme is introduced that encom-
passes the biased version of ELM. Then, the paper proposes a semi-
supervised learning model, which is based on that biased-
regularization scheme and follows a two-step procedure. In the
first step, an unsupervised clustering of the whole dataset (includ-
ing both labeled and unlabeled data) obtains a reference solution;
in the second step, the clustering outcomes drive the learning
process in a biased ELM (br-ELM) to acquire the class information
provided by labels. The ultimate result is that the overall learned
function exploits both labeled and unlabeled data. The integrated
framework applies to both linear and nonlinear data distributions:
in the former case, one works under a cluster assumption on data;
in the latter case, one works under a manifold hypothesis [14]. As a
consequence, for a successful semi-supervised learning, unlabeled
data are assumed to carry some intrinsic geometric structure, e.g.,
in the ideal case, a low-dimensional, non- linear manifold.

The proposed biased semi-supervised approach exhibits sev-
eral features, such as modularity in the procedure that generates a
biased solution, convexity of the cost function, predictable com-
plexity, and out-of-sample extension. Moreover, the paper shows
that the proposed framework may allow one to benefit from tight
generalization bounds. Such result is noteworthy in that a learning
machine featuring tight generalization bounds can provide power-
ful options to attain reliable model selection [11,15–17]; that
property may prove especially useful in those cases when
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strategies such as cross validation are difficult to be applied, e.g. in
the small sample case (i.e., less than 50 labeled patterns). Indeed,
this seems to represent an interesting novelty point in the
scientific landscape of semi-supervised learning ELM models
[18–20].

The experimental verification of the method involves three
different datasets: USPS [21], Isolet [22], Statlog Landsat Satellite
[23] and COIL-20 [24]. Experimental results confirm the effectiveness
of br-ELM and prove that the proposed semi-supervised learning
scheme compares positively with state-of-the-art algorithms, such as
LapRLS [14], LapSVM [14], Transductive SVM (TSVM) [25], Correlated
Nystrom Views (XNV) [26] and SS-ELM [20].

The paper is organized as follows. Section 2 gives a brief
theoretical background on regularization based learning. Section
3 formalizes the biased regularization based learning scheme, and
introduces biased ELM. Section 4 presents the semi-supervised
classification framework based on biased regularization. Section 5
discusses experimental results and proposes a comparison with
LapRLS, LapSVM, TSVM, and SS-ELM. Finally, Section 6 gives some
concluding remarks.

2. Theoretical background

2.1. Regularization-based learning

Modern classification methods often rely on regularization
theory, which was initially introduced in [27] and generalized to
the nonlinear case by kernel methods [28]. In a regularized
functional, a positive parameter λ rules the tradeoff between the
empirical risk, Remp[f], (loss function) of the decision functions f (i.
e., regression or classification) and a regularizing term. The cost to
be minimized can be expressed as:

Rreg ¼ Remp f
� �þλΩ f

� � ð1Þ
where the regularization operator Ω[f] quantifies the complexity of
the class of functions from which f is drawn. When dealing with
maximum-margin algorithms, Ω[f] is implemented by the term ||f||,
which supports a square norm in the feature space. The Repre-
senter Theorem [8] proves that, when Ω[f]¼ ||f||, the solution of the
regularized cost (1) can be expressed as a finite summation over a
set of labeled training patterns T¼{(x,y)i; i¼1,…,P}, with yA
{�1,1}.

SVM [25] and Regularized Least Squares (RLS) [25] are popular
methods belonging to this family of regularizing algorithms. In
both cases, f belongs to a Reproducing Kernel Hilbert Space (RKHS)
H [28] and a kernel function K(xi,xj) allows treating only inner
products of pattern pairs, disregarding the specific mapping of
each single pattern. Accordingly, the solution of the regularized
cost (1) can be expressed as

f ðxÞ ¼
X
j

βUKðx; xjÞ: ð2Þ

The two learning algorithms differ in the choice of the loss
function. The SVM model uses the ‘hinge’ loss function, whereas
RLS operates on a square loss function.

The ELM framework indeed belongs to the class of regularized
learning methods. In principle, the ELM model implements a
single-hidden layer feedforward neural networks (SLFN) with Nh

mapping neurons. The response of a neuron to an input stimulus x
is implemented by any nonlinear piecewise continuous functions a
(x,ζ), where ζ denotes the set of parameters of the mapping
function. The overall output function is then expressed as

f ðxÞ ¼
XNh

j ¼ 1

wjhjðxÞ ð3Þ

wherewj denotes the weight that connects the jth neuronwith the
output, and hj(x)¼a(x,ζj). In ELM the parameters ζj are set
randomly. As the training process reduces to the adjustment of
the output layer, training ELMs is equivalent to solving a regular-
ized least squares problem. Hence, the minimization problem can
be expressed as

min
f

XP
i ¼ 1

yi� f ðxiÞ
� �2þλ‖f‖2

( )
: ð4Þ

The vector of weights w is then obtained as follows:

w¼ ðHtHþλIÞ�1Hty: ð5Þ
Here, H is a P�Nh matrix with hij¼hj(xi).

2.2. Generalization error in regularized classifiers

A crucial issue in classification problems is the tuning of the
classifier regularization parameter(s). Using strategies based on
cross validation procedures represent a popular and powerful
solution to tackle model selection [29]. At the same time, the
literature has showed [15–17] that a reliable option to attain
effective model selection is represented by theoretical approaches
that derive analytical expressions of the generalization error
bounds. Such approaches may indeed prove useful when tackling
limited-sample problems, as they do not require any data parti-
tioning and are always based on the complexity on the hypothesis
space, F. The bound value to the ‘true’ generalization error, R[f], is
asserted with confidence at least 1�δ, and is commonly written as
the sum of several terms

R f
� �¼ Remp f

� �þχþψ ð6Þ
where Remp[f] is the error on the training set, χ measures the
complexity of the space of classifying functions, and ψ penalizes
the finiteness of the training sample. The Maximal Discrepancy
(MD) [15] and the Rademacher Complexity (RC) [30] represent two
well-known theoretical approaches that prove effective in esti-
mating the upper bound of R[f].

The following sections show that the proposed framework for
semi-supervised learning based on biased regularization inher-
ently impact on the termχ in (6). This in turn means that the
learning model supporting the br-ELM can contribute to limit the
complexity of the hypothesis space F, thus enhancing the perfor-
mance in terms of generalization bounds.

3. A unifying framework for biased learning

The general biased regularization model consists in biasing the
solution of a regularization-based learning machine by a reference
function (e.g., a hyperplane). The nature of this reference function
is a crucial aspect that concerns the learning theory in general.
This section discusses two main aspects, that is, the formal
definition of a general biased-regularization scheme, and the
formalization of the ‘biased regularization ELM’ (br-ELM) within
this scheme.

3.1. Biased regularization

In the linear domain one can define a generic convex loss
function L(X, Y, w), and a biased regularizing term; the resulting
cost function is

LðX;Y ;wÞþλ1
2
‖w�λ2w0‖2 ð7Þ

where w0 is a “reference” hyper-plane, λ1 is the classical regular-
ization parameter that controls smoothness (i.e., λ in (1)), and λ2
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