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a b s t r a c t

Extreme learning machine (ELM) is a very simple machine learning algorithm and it can achieve a good
generalization performance with extremely fast speed. Therefore it has practical significance for data
analysis in real-world applications. However, it is implemented normally under the empirical risk
minimization scheme and it may tend to generate a large-scale and over-fitting model. In this paper, an
ELM model based on L1-norm and L2-norm regularizations is proposed to handle regression and
multiple-class classification problems in a unified framework. The proposed model called L1–L2-ELM
combines the grouping effect benefits of L2 penalty and the tendency towards sparse solution of L1
penalty, thus it can control the complexity of the network and prevent over-fitting. To solve the mixed
penalty problem, the separate elastic net algorithm and Bayesian information criterion (BIC) are adopted
to find the optimal model for each response variable. We test the L1–L2-ELM algorithm on one artificial
case and nine benchmark data sets to evaluate its performance. Simulation results have shown that the
proposed algorithms outperform the original ELM as well as other advanced ELM algorithms in terms of
prediction accuracy, and it is more robust in both regression and classification applications.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

At the information stage, there has been a growing interest in
the study of data analysis techniques. Techniques of data analysis
can extract previously unknown, hidden, but potentially useful
information and knowledge from original data, which is helpful to
provide suggestions or decisions for future actions [1]. Single-
hidden layer feedforward network (SLFN) is one of the classic
methods used in data analysis due to its powerful nonlinear
mapping capability [2]. However, it is clear that the learning speed
of SLFN is far slower than required because of its slow gradient-
based learning algorithm [3,4], which has imposed very challen-
ging obstacles in practical applications.

Recently, extreme learning machine (ELM) for SLFNs was
proposed by Huang et al. [5]. It randomly chooses the parameters
of hidden nodes and analytically determines the output weights
through the use of ordinary least square method. It tends to reach

the solution straightforward without facing such trivial issues like
local minima, improper learning rate, poor computational scal-
ability, and so on. Compared with other traditional learning
techniques, ELM can achieve a better generalization performance
for classification and regression with extremely fast speed, which
makes it work as an emergent technology for data analysis in
many practical applications, such as wireless sensor networks [6].
However, basic ELM solutions may tend to generate an over-fitting
model and are less stable in some situations [7]. Moreover, there is
another question in the ELM design: how to obtain an appropriate
neural network (NN) structure?

To overcome the problems ELM faced, several schemes have
been proposed. A regularized ELM based on L2 penalty was
proposed by Deng et al. [8]. It avoids the generation of an over-
fitting model and can provide more robust estimate as well as
better generalization ability than ELM. But it cannot provide a
suitable NN structure, which may lead to some issues while facing
irrelevant variables. To find an appropriate NN structure with
better robustness and generality, in [9], Rong et al. proposed a fast
pruned ELM based on statistical tests for classification problems.
Then using a similar statistical method that measures the relativity
between the hidden nodes and the output nodes of ELM,
Martínez-Martínez et al. proposed a regularized ELM based on L1
penalty and hybrid penalties for regression problems in [10].
In [9,10], although those algorithms can generate a spare NN
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structure, they do not provide a unified NN framework for both
regression and classification problems. Miche et al. proposed an
optimally pruned ELM called OP-ELM for regression and classifica-
tion in [11]. Actually, it is also a regularized ELM through the use of
the least angle regression (LARS) algorithm, i.e., a L1 penalty. But
this algorithm has its limitation while facing a group of high
correlated variables. In fact, it just selects one variable from the
group, which may lead to a suboptimal model finally.

In order to develop a more appropriate NN structure to over-
come the hurdle that a suboptimal model faced, we propose a
novel ELM algorithm based on L1 penalty and L2 penalty to deal
with both multiple-output regression tasks and multiple-class
classification tasks in a unified framework with the purpose of
improving the robustness and generality of the model. Based on
the L1 norm, the L2 penalty is also introduced to ELM for the
purpose to encourage a group effect, then groups of correlated
hidden nodes can be selected. Therefore, our proposed L1–L2-ELM
benefits from ridge regression and the tendency towards sparse
solution of the L1 penalty, and it can generate a more suitable NN
structure than OP-ELM. And elastic net algorithm is used to solve
these mixed penalties [12]. Here, the multiple-class classification
problem is transformed into a multiple-output regression pro-
blem. In general, elastic net is applied to deal with the special
cases that have the single response variable. Moreover, it is
obvious that different hidden nodes have varying degrees of
relativity to the output nodes of ELM, some of hidden nodes
may be weakly correlated with a certain output node, and some of
other hidden nodes may be weakly correlated with another output
node. Thus, for different output nodes, we may prune different
hidden nodes, which can obtain a more appropriate NN structure.
Considering the above two points, the separate elastic net algo-
rithm and the Bayesian information criterion (BIC) [13] are
adopted to find the optimal model for each response variable.
Thus, the proposed algorithm may encourage a grouping effect
and produce a sparse model with a higher predict accuracy, which
tends to reduce over-fitting and provide a more robust model.

This paper is organized as follows. The SLFN based on ELM and
classic regularization methods is analyzed in Section 2. The proposed
ELM model based on L1-norm and L2-norm regularizations is
presented in Section 3. The simulation results and discussion are
provided in Section 4. The conclusion is summarized in Section 5.

2. Model description

2.1. ELM-based SLFN

Different from traditional theories that all the parameters of
the feedforward NN need to be tuned to minimize the cost
function, ELM theories claim that the hidden node learning
parameters can be randomly assigned independently and the
network output weights can be analytically determined by solving
a linear system through the use of the least square method [14].
The training phase can be efficiently completed without time-
consuming learning iterations and ELM can achieve a good
generalization performance.

For P arbitrary distinct samples (xi, ti) where xi ¼
½xi1; xi2;…; xim�TARm and ti ¼ ½ti1; ti2;…; tin�TARn, a standard SLFN
with L hidden nodes can be mathematically modeled as

oi ¼
XL
j ¼ 1

βjGðaj; bj; xiÞ; i¼ 1;2;…; P ð1Þ

where aj and bj are the learning parameters of hidden nodes, and
βj ¼ ½βj1;βj2;⋯;βjn�T is the link connecting the jth hidden node to

the output nodes, Gðaj; bj; xiÞ is the output of the jth hidden node
with respect to the input xi, oi is the actual output of the neural
network with respect to the input xi.

For additive hidden nodes with the sigmoid or threshold
activation function g(x): R↦R, Gðaj; bj;xiÞ is given by

Gðaj; bj; xiÞ ¼ gðaTj � xiþbjÞ; ajARm ; bjAR ð2Þ
where aj ¼ ½aj1; aj2;…; ajm�T is the weight vector connecting the jth
hidden node and the input nodes, bj is the threshold of the jth
hidden node.

For radial basis function (RBF) hidden nodes with the gaussian
or triangular activation function g(x): R↦R, Gðaj; bj; xiÞ is given by

Gðaj; bj; xiÞ ¼ g bj Jxi�aj J2
� �

; ajARm; bjARþ ð3Þ
where aj and bj are the center and impact factor of the jth RBF
hidden node, Rþ indicates the set of all positive real values. In
addition, J � J2 denotes the L2-norm. The SLFN with L hidden
nodes can approximate these P samples with zero error, which
means that the cost function E¼ PP

i ¼ 1 Joi�ti J2 ¼ 0, i.e., there
exist (aj, bj) and βj such that

ti ¼
XL
j ¼ 1

βjGðaj; bj;xiÞ; i¼ 1;2;…; P ð4Þ

The above P equations can be rewritten compactly as

Hβ¼ T ð5Þ
where

H¼
Gða1; b1; x1Þ ⋯ GðaL; bL; x1Þ

⋮ ⋱ ⋮
Gða1;b1; xPÞ ⋯ GðaL; bL; xPÞ

264
375
P�L

;

β¼
βT
1

⋮
βT
L

2664
3775
L�n

and T¼
tT1
⋮
tTP

264
375
P�n

:

Here, H is called the hidden layer output matrix of the SLFN.
Thus, the system (5) becomes a linear model and the output
weights can be analytically determined by finding a least-square
solution of this linear system as follows:

β¼H†T ð6Þ
where H† is the Moore–Penrose generalized inverse of matrix H
[15]. Thus, ELM can be summarized as Algorithm 1.

Algorithm 1. ELM.

Input: a training set: fðxi; tiÞjxiARm; tiARn; i¼ 1;…; Pg;
hidden node activation function: g(x);
hidden node number: L.

Output β.
1 Assign arbitrary learning parameters of hidden nodes

aj and bj, 1r jrL
2 Calculate the hidden layer output matrix H based on

(5)
3 Calculate the output weights β¼H†T.

Although ELM learning has been developed to work at a much
faster learning speed with the higher generalization performance,
it also has some drawbacks:

1. ELM is designed with the empirical risk minimization (ERM)
principle and tends to generate an over-fitting model.

2. ELM provides weak control capacity and is less stable since it
directly calculates the minimum norm least-square solutions.
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