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a b s t r a c t

In this paper an efficient active set algorithm is presented for fast training of Optimization Extreme
Learning Machines (OELMs). This algorithm suggests the use of an efficient identification technique of
active set and the value reassignment technique for quadratic programming problem. With these stra-
tegies, this algorithm is able to drop many constraints from the active set at each iteration, and it can
converge to the optimal solution with less iterations. The global convergence properties of the algorithm
as well as its theoretical properties are analyzed. The effectiveness of the algorithm is demonstrated via
benchmark datasets from many sources. Experiment results indicate that the quadratic programming
problem which keeps the number of constraints in the active set as small as possible is computationally
most efficient.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Optimization Extreme Learning Machines (OELMs) are a rec-
ently proposed regularized machine learning technique and their
goal is mapping an original input space into Extreme Learning
Machine (ELM) feature space in which the training samples can be
separable [1]. It has been shown that OELMs are less sensitive to
user specified parameters and offer excellent performance in many
applications. The training stage for OELMs involves at its core a
dense convex quadratic programming (QP) problem. Tackling this
optimization problem is computationally expensive, primarily due
to the dense Hessian matrix. Active set method is preferable when
QP of the constraint matrix of the QP problem is dense [2]. The
main purpose of this paper is to exploit the structure of QP of
OELMs and design a fast solution based on an active set method.

First, there is the problem of binary classification. The sample set
consists of N examples tx ,i i i

N
1{( )} = , where xi

m∈ and t 1, 1i ∈ { − + }.
An Optimization Extreme Learning Machine (OELM) algorithm with
penalization of the training errors consists of solving the following
equation:

C

t h

i N

x

minimize
1
2

subject to 1
0, 1, , 1

i

N

i

i i i

i

2

1

∑β

β

ξ

ξ
ξ

‖ ‖ +

⋅ ( ) ≥ −
≥ = … ( )

=

where β is the normal vector of the weight theory, h xi( ) actually
maps the training examples from the m-dimensional input space to
the ELM feature space, and C is a user-specified value.

The standard way to train an OELM is to introduce Lagrange
multipliers and optimize them by solving the following equation:
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where Nα ∈ represents a vector of non-negative Lagrange multi-
pliers corresponding to the inequality constraints, e is the vector of all
1's of length N , t tELM

T N NΚ Κ= ∈ × is positive semi-definite kernel
matrix, and t is N vector with components ti and .

Eq. (2) is similar to Support Vector Machine's (SVM) dual pro-
blem [3]. SVM dual problem needs to satisfy both equality con-
straints and inequality constraints, while OELM problem only
needs to satisfy the inequality constraints. Obviously SVM tends to
find a sub-optimal solution compared to OELM.

The essential part of an active set method is a procedure for
determining which of the r inequality constraints will be active (that
is, treated as equalities). In the active set method, variables at their
boundary correspond to the active constraints. Several active set
methods have been proposed for solving QP of SVM and OELM [2,4–
6]. Although these methods provide an efficient implementation, two
disadvantages still exist:

(1) Methods of this type are efficient for training set with relatively
small examples, but are typically unsuitable for large training
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set with abundant examples. The main reason is the set of active
constraints is changed by the addition or deletion of no more
than one constraint at each iteration. So if, for example, 100
constraints are binding at the point of convergence and an
interior starting point is selected, then the method will require
at least 100 iterations (and possible O n3 /2( )) to converge.

(2) Methods of this type update the active set until the correct set is
confirmed at the optimum. Although only a subset of the con-
straints joins the computations at each iteration, the same
constraint may be added and dropped repeatedly. Such method
may usually waste time minimizing the function with “wrong”
constraint.

In order to overcome the above limitations, two directions we
are explored in this paper:

(1) piecewise project gradient technique is employed to add several
constraints to the active set at each iteration. Steepest descent
direction can be obtained by adjusting the appropriate stepsize;

(2) value reassignment method is used to reduce the phenomenon
of repeated iterations. At the current iteration, although a con-
straint has been removed from the active set, the value of a
corresponding variable has not been changed yet. It is quite
possible that this constraint is added to the active set in itera-
tions again.

The organization of this paper is as follows. The rest of this
section introduces notation. Section 2 describes a basic active set
algorithm. Section 3 gives a detailed statement of the resear-
chers' algorithm. In Section 4, the theoretical properties of the
researchers' algorithm are then investigate. Performance evalua-
tion is presented in Section 5. Discussions and conclusions are
given in Section 6.

This section concludes by providing a list of the notation
employed. Throughout the paper, ‖⋅‖ indicates the Euclidean vec-
tor norm. If Κ is an N N× matrix with elements ijΚ , i j N, 1,= … ,
and I is an index set such that I N1, ,⊆ { … }, it is denotes by IIΚ the
I I× submatrix of Κ consisting of elements ijΚ , i I∈ , j I∈ . If α is
an N vector, it is denotes by Iα the subvector with components iα ,
i I∈ . The gradient f α∇ ( ) is a row vector while g f Tα α( ) = ∇ ( ) is a
column vector and T denotes transpose. A superscript (k in gen-
eral) indicates iteration numbers.

2. The Basic active set (BAS) algorithm

Following the usual terminology in constrained optimization
problems, vector Nᾱ ∈ is a stationary point of Eq. (2) if vector ᾱ
exists, then it solves the Karush–Kuhn–Tucker (KKT) system [7]
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where g iᾱ( ) is the i-th component of the gradient vector of f at ᾱ.
Here, we first define the feasible region of Eq. (2), that is, the set of

all α to search for the optimal solution. Given a point α in the feasible
region, a constraint C0 iα≤ ≤ is call active at α if 0iα = or

Ciα = .L i 0iα= { | = } and U i Ciα= { | = } are defined as the indices set
of the active constraints, and the set L U∪ of bound variables are
called the active set at the current point. Also, S i C0 iα= { | < < } is
defines as the free set, and the set S of variables are corresponding to
free variables.

The vector of α variables whose indices belong to set L will be
denoted by Lα , and other α variables will be denoted by Uα and Sα
respectively. Corresponding to the choice of index set L, U and S,

the matrix Κ is partitioned and rearranged as follows:
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As vector Lα makes no contribution to compute the value of
objective function f , solving Eq. (2) is equivalent to solving the
following equation:

ef

C i S

minimize
1
2

subject to 0 , 4

S S
T

SS S U
T

US S
T

S

i

Κ Κ

α

α α α α α α( ) = + −

≤ ≤ ∈ ( )

With notation S defined above, a box constrained Eq. (4) is
reduced eventually to an unconstrained minimization problem
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The essence of active set algorithms is to handle an uncon-
strained optimization problem with a fixed active constraint set. A
typical iteration of these methods can be described as follows.
Given a feasible point S

kα( ) (i.e. a point such that C0 S
kα< <( ) ,k 0= ):

Algorithm BAS

Step 1: Identify the set U i Ck
i

kα= { | = }( ) ( ) of active constraints;
Step 2: Compute a descent direction d k

S S
kα α= * −( ) ( ), where Sα* is

the solution of Eq. (4);
Step 3: Drop one constraint if some dropping rule allows it. If it
is the case, compute a new direction d k( ) as above;
Step 4: Perform a line search along d k( ) with maximal stepsize

k
1μ ( ) not breaking constraints C0 i

kα≤ ≤( ) , i S∈ in order to get a
new feasible point dS

k
S
k k k1

1μα α= +( + ) ( ) ( ) ( ).

Different methods differ by the choice of a descent direction and
the relaxing rule. In [4,6], active set algorithms follow the search
direction d k( ) until a constraint is broken and remove the corre-
sponding variable from the free set S. The largest possible stepsize

k
1μ ( ) is chosen that do not lead to breaking of the box constraints of

problem (2). It is obvious that all components of S
kα( ) are set the same

stepsize k
1μ ( ). However, only one constraint is allowed to drop from

the active set at each iteration, may lead more iterations to converge.

3. Proposed active set algorithm

3.1. The piecewise projected gradient

In this section, a piecewise projected gradient method is
described whereby more than one constraint could be dropped
from the active set between iterations. A piecewise projected
gradient method has been discussed for the mathematical opti-
mization problem in theory many times [8–10]. Theoretically, by a
series of projections, the active constraints can be identified in a
finite number of iterations.

To formalize the piecewise projected method, the notation of a
projection operator Π is introduced and defined componentwise
by
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With this notation,α can be updated by d: Π μα α= ( + ), where
μ is the stepsize, and d is the search direction.
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