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a b s t r a c t

In the paper, we examine the general regression problem under the missing data scenario. In order to
provide reliable estimates for the regression function (approximation), a novel methodology based on
Gaussian Mixture Model and Extreme Learning Machine is developed. Gaussian Mixture Model is used
to model the data distribution which is adapted to handle missing values, while Extreme Learning
Machine enables to devise a multiple imputation strategy for final estimation. With multiple imputation
and ensemble approach over many Extreme Learning Machines, final estimation is improved over the
mean imputation performed only once to complete the data. The proposed methodology has longer
running times compared to simple methods, but the overall increase in accuracy justifies this trade-off.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recurring problem in many scientific domains is the accurate
prediction or forecast for unknown and/or future instances. This
issue is addressed by assuming that there exist the underlying
mechanism that generates the available data, and then building a
model that provides good enough approximation for that same
mechanism. Finally, any kind of inference is based on the con-
structed model assuming all the necessary information is taken
into account. The task of making predictions, for example, daily
temperature or retail sales for some specific time period, is
considered a regression problem or estimation of the regression
function. Another issue becoming more prevalent in machine
learning domain is related to the missing data in databases
encountered in many research areas [1–4]. This issue has huge
impact on both the learning algorithms and the subsequent
inference procedures. If this issue is not treated correctly, any
kind of inference results in severely biased and inaccurate
estimates.

In the paper, we are interested with regression problems of the
form:

yi ¼ f ðxiÞþϵi ð1Þ

in the presence of missing data where ðX;YÞ ¼ fðxi; yiÞgNi ¼ 1 are data
samples with xi consisting of d explanatory features or variables, yi
the target variable and ϵi the noise term. The usual assumption
behind the noise term is that it follows a Gaussian distribution
with zero mean and known variance ϵ�N ð0;σ2Þ. The regression
problem is to find a model M that is a close approximation to the
true underlying function f. The case explored in this paper is when
samples or observations X contain unobserved (unknown) vari-
ables, that is, the values are missing for certain observation and
features. Values could be missing for a variety of reasons depend-
ing on the source of the data, including measurement error, device
malfunction, operator failure, and many others. On the other hand,
many modelling methods assume that data contain a fixed
number of samples lying in a fixed feature space. Presence of
missing values prevents these methods to be applied directly to
the data. Simple ad hoc solutions to incomplete data include
completely removing samples containing unobserved values,
mean imputation with the mean computed on available values,
replacement from correlated variables, substitution based on prior
information (such as regional codes) and others. In order to
provide more reliable inference after the modelling stage, a
suitable strategy must be employed.
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Besides simple ad hoc procedures, there are several paradigms
for dealing with missing data used in conjunction with machine
learning methods [5] and these include:

� Conditional mean imputation approach which is optimal in
terms of minimising the mean squared error of the imputed
values, but suffers from biased statistics of the data. For
instance, estimates of variance or distance are negatively
biased.

� Random draw imputation that is more appropriate for generat-
ing a representative instance of a fully imputed data set.
However, the imputations can be highly variable with respect
to any single value to be accurate.

� Multiple imputation: This setup draws several representative
imputations of the data, analyses each set separately, and
combines the results to form an overall estimate with uncer-
tainty taken into account [6]. This approach can result in
unbiased and accurate estimates after a sufficiently high
number of draws, but it is not always straightforward to
determine the posterior distribution to draw from [7]. In the
context of machine learning, repeating the analysis several
times is impractical as training and analysing a sophisticated
model tends to be computationally expensive.

The conceptually simplest approach to dealing with incomplete
data is to fill in the missing values before commencing any further
analysis. Many methods have been suggested for imputation with
the intent to appropriately conform to the distribution of the data.
These include imputation by nearest neighbours [8], or the
improved incomplete-case k-NN imputation [9]. An alternative
approach is to study the input density indirectly through condi-
tional distributions by fully conditional specification [10]. How-
ever, the uncertainty of the imputed values is often not explicitly
modeled in most imputation methods, and hence ignored in the
further analysis, potentially leading to biased results.

Having an appropriate model to take into consideration miss-
ing data has several advantages. First, with any kind of imputation,
many learning algorithms can be directly applied to imputed data,
such as neural networks, Gaussian processes and density estima-
tion methods. Second, having a specific model designed to tackle
missing values allows to take into consideration the variability of
imputed values, and thus, the variance of the final estimation the
practitioner is interested about.

Finite mixture models are a powerful modelling tool with a
wide array of applications. Of considerate importance is the
Gaussian Mixture Model (GMM), also known as Mixture of
Gaussians, which has been studied extensively to describe dis-
tributions of a data set. This model provides a suitable estimation
of the underlying data density distribution as GMM is a universal
approximator [11]. This enables GMM to model any kind of
continuous densities to arbitrary precision, and has been
employed for a variety of problems in vision [12,13], language
identification [14], speech [15,16] and image [17,18] processing.
The parameters of GMM are obtained via maximum likelihood
(ML) estimation by the Expectation–Maximisation (EM) algorithm
[19]. EM algorithm is a general purpose algorithm for finding the
ML solution with latent variables or incomplete data and does not
require any derivatives of the likelihood function. GMM has been
extended to accommodate missing values in data sets [20,21]
which has seen some resurgence in recent years [22–24].

In this paper, we are considering regression estimation in the
presence of missing data. First, mixture of Gaussians is applied to
original data with missing values. Second, a large number of
imputations is performed, that is, a multiple imputation approach
is adopted. After all newly formed data sets are available, a suitable
regression model is build. As the number of draws can be large and

the data sets can often contain huge number of samples, a fast (in
terms of training speed) and accurate model should be used. The
choice is on Extreme Learning Machine (ELM) as it satisfies both
criteria. In the case of difficult data, where substantial number of
imputed data sets is required, ELM acts a good model as fast
computational models are more viable than the alternative
gradient-based neural networks or kernel methods.

Gaussian Mixture Model has been used to train neural net-
works in the presence of missing data [25] with the average
gradient computed for the relevant parameters by using condi-
tional distribution for the missing values. The method is designed
to handle training of networks with back-propagation and is not
applicable to other machine learning methods. Extreme Learning
Machine has also been adapted to handle missing values [26,27]
with both approaches estimating distances between samples that
are subsequently used for the RBF kernel in the hidden layer. One
advantage of that approach is circumventing estimation of all the
missing values and focusing only on providing required informa-
tion for the methods based on distances, such as Support Vector
Machines or k-nearest neighbours. However, the method only
returns expected pairwise distances that are then employed by the
ELM for regression. The downside is that other activations func-
tions have to be ignored, and the imputation is done once by the
conditional mean. Although conditional mean imputation provides
improved results over simple ad hod solutions, it neglects the
variability introduced by the underlying Gaussian Mixture Model.

The rest of the paper is organised as follows: Section 2 explains
the overall approach in more detail focusing on the main points in
the methodology. Two main components of the approach, namely
Mixture of Gaussians for missing data and Extreme Learning
Machine are explained in Sections 3 and 4 respectively. Section 5
showcases the results between two types of imputation – condi-
tional mean and multiple imputation, combined with two differ-
ent modelling strategies. Finally, summarising remarks are given
in Section 6.

2. Methodology

The overall approach consist of four consecutive stages:

1. Fitting the Gaussian Mixture Model on a data set with missing
values.

2. Generating new data sets via multiple imputation based on the
Gaussian Mixture Model from the first stage.

3. Building Extreme Learning Machine for each generated data set
in the second stage.

4. Combining all the Extreme Learning Machines to provide final
estimates.

2.1. Gaussian Mixture Model fitting

In the first stage, a Gaussian Mixture Model Γ is fitted to the
data with missing values. Since the data contains missing values,
straightforward application of the EM algorithm is not possible
and certain adjustments are necessary for both E and M-steps. In
the E-step, conditional expectations with respect to known values
in samples are used to obtain means and covariances for the
missing values. In the M-step, the conditional mean fills the
missing parts (per sample imputation) in order to compute
GMM component means. The covariance matrices for each com-
ponent are similarly adjusted taking into account covariances for
the missing parts. The details required to carry out these correc-
tions are explained in Section 3.1.
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