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a b s t r a c t

Extreme Learning Machine (ELM), which was initially proposed for training single-layer feed-forward
networks (SLFNs), provides us a unified efficient and effective framework for regression and multiclass
classification. Though various ELM variants were proposed in recent years, most of them focused on the
supervised learning scenario while little effort was made to extend it into unsupervised learning
paradigm. Therefore, it is of great significance to put ELM into learning tasks with only unlabeled data.
One popular approach for mining knowledge from unlabeled data is based on the manifold assumption,
which exploits the geometrical structure of data by assuming that nearby points will also be close to
each other in transformation space. However, considering the manifold information only is insufficient
for discriminative tasks. In this paper, we propose an improved unsupervised discriminative ELM
(UDELM) model, whose main advantage is to combine the local manifold learning with global
discriminative learning together. UDELM can be efficiently optimized by solving a generalized eigen-
value decomposition problem. Extensive comparisons over several state-of-the-art models on clustering
image and emotional EEG data demonstrate the efficacy of UDELM.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

ELM as an emerging learning technique provides an efficient
unified solution to generalized feed-forward networks such as
SLFNs. The main merit of ELM is that the network input weights
are randomly assigned and independent from specific applications
[1,2], which makes the analytical solution of network output
weights be efficiently obtained by solving a least square formula.
Despite the fact that the determination of the network hidden layer
outputs is based on randomly generated network input weights, it
has been proven that SLFNs trained based on ELM algorithm still
have the global approximation ability [3,4]. ELM is a unified
framework for regression and multiclass classification [5]. Due to
its effectiveness and fast learning process in comparison with
gradient descend-based optimization, ELM has been adopted in
many applications such as face recognition [6], action recognition
[7,8], gesture recognition [9], security assessment [10], EEG signal

processing [11], data privacy [12], image quality assessment [13,14]
and remote sensing [15].

Though many ELM variants were proposed in the last few years
[16–21,8], the extension on ELM research focused mainly on the
supervised learning tasks. This greatly limits the applicability of
ELM in utilizing unlabeled data. Moreover, in many real world
applications, labeled data is usually expensive to obtain but
unlabeled data is relatively easy to collect, which drives us to
extend ELM into unsupervised learning by properly harnessing the
unlabeled data. On the basis of manifold regularization, Huang and
his colleagues proposed two ELM variants, semi-supervised ELM
and unsupervised ELM (USELM) [22]. He et al. proposed to do
clustering in the ELM hidden layer space in view of the good
properties of its random feature mapping, which generates better
results than clustering in the original data space [23]. The part
from hidden layer to output layer of ELM was discarded and the
hidden layer representation was used for clustering. The ration-
ality of ELM feature mapping was also analyzed in [23]. A new ELM
clustering technique was presented by Akusok et al. [24] by
incorporating some prior knowledge into clustering. This method
utilizes the prior knowledge of the exact number of points in each
cluster; however, this requirement is usually hard to satisfy. We
are sometimes provided with imbalance data sets which have
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different number of points in different clusters. These unsuper-
vised models greatly enlarge the applicability of ELM.

In this paper, we aim to make improvements on the basis of
USELM [22] for the reasons that (1) we want to retain the whole
architecture of ELM network, from input layer, hidden layer to
output layer; (2) we need not to know the exact number of points
in each cluster before clustering. USELM, which was designed to
exploit the underlying structure of data, shows excellent perfor-
mance in clustering when comparing with several state-of-the-art
unsupervised algorithms [22]. However, it pays only attention to
the local structure of data and ignores the discriminative informa-
tion of different classes. Various studies have shown that both
structure and discriminative information are important in dealing
with discriminative tasks such as classification [25–27] and
clustering [28,29]. Specifically, Guan et al. introduced the manifold
regularization and the margin maximization into non-negative
matrix factorization and presented the manifold regularized dis-
criminative non-negative matrix factorization [25]. In [26], similar
technique was incorporated into the ELM framework for EEG-
based emotion recognition. Shu et al. included a graph regulariza-
tion term into the discriminative analysis based on spectral
regression [27]. The formulated LocLDA method covers both local
and global structure information, which is more effective for face
recognition. In [28], Yang et al. proposed to exploit the discrimi-
native information in each local data clique based on constructing
an elaborate local graph Laplacian and then globally integrating
the local models of all the local cliques. The formulated model,
local discriminant models and global integration (LDMGI), was put
into spectral clustering and promising results were demonstrated
in comparison with ordinary normalized cut [30]. In [29], both
local manifold learning and global discriminative learning are
incorporated into non-negative matrix factorization to learn effec-
tive data representation.

Inspired by existing studies, we propose a novel unsupervised
ELM model, unsupervised discriminative ELM, to utilize both the
local structure and global discriminative information of data. Our
goal is to learn a well-structured data representation for cluster-
ing. On the one hand, the learned data representation can preserve
the intrinsic structure as much as possible through efficiently
exploiting the local manifold information; on the other hand, the
global discriminative information is utilized to make the learned
representation achieve discriminative power, e.g., differentiating
samples from different clusters.

The main contributions of this paper can be summarized as
follows:

(1) We propose the unsupervised discriminative ELM to derive
better data representations for clustering. UDELM utilizes both
the local structure and global discriminative information
of data.

(2) Different from USELM, which needs to tune the number of
output neurons, UDELM defines such value as the number of
the clusters. This exactly coincides with the original ELM
definition.

(3) Extensive experiments are conducted to evaluate the cluster-
ing performance of UDELM by comparing with several state-
of-the-art algorithms. Results on five widely used image data
sets and one emotional EEG data set demonstrate the efficacy
of UDELM.

The remainder of this paper is organized as follows. Section 2
provides a brief review of ordinary ELM and USELM [22]. Section 3
proposes the model formulation and optimization method of
UDELM. Experimental studies to evaluate the performance of
UDELM are given in Section 4. Section 5 concludes the paper.

2. Preliminaries

2.1. Extreme learning machine

Denote fxi; cigi ¼ 1;…;N a set of N raw feature vectors xiARD and
the corresponding class labels ciAf1;…;Cg. The task is to train a
SLFN with fxi; cigi ¼ 1;…;N . Such a network consists of D input (the
dimensionality of xi), L hidden and C output (the number of
classes) neurons. In ELM, the number of hidden neurons is usually
set to be larger than the number of classes to ensure the global
approximation ability [5], i.e., L⪢C. For each training vector xi, the
corresponding network target vector is ti ¼ ½ti1;…; tiC �. Generally,
when xi belongs to class k, that is ci ¼ k, we have tij ¼ 1 if j¼k and
tij ¼ �1 otherwise. In ELM, the network input weights WARL�D

and the hidden layer biases bARL are randomly generated, which
leads to the analytical calculation of the network output weights
βARL�C .

Based on the above settings, the network response oi ¼
½oi1;…; oiC � corresponding to xi can be calculated by

oik ¼
XL
j ¼ 1

βjkhjðxiÞ; k¼ 1;…;C ð1Þ

where hðxiÞ ¼ ½h1ðxiÞ;…;hLðxiÞ�AR1�L is the output row vector of
the hidden layer corresponding to the input xi. hðxiÞ actually maps
the sample xi from the D-dimensional input space X to the
L-dimensional ELM feature space H. By storing the network
hidden layer outputs for all the training vectors in one matrix,
we have

H¼

hðx1Þ
hðx2Þ
⋮

hðxNÞ

2
66664

3
77775¼

h1ðx1Þ h2ðx1Þ ⋯ hLðx1Þ
h1ðx2Þ h2ðx2Þ ⋯ hLðx2Þ

⋮ ⋮ ⋮ ⋮
h1ðxNÞ h2ðxNÞ ⋯ hLðxNÞ

2
66664

3
77775:

We can rewrite (1) in a compact form as

O¼Hβ; ð2Þ
where OARN�C is a matrix containing the network responses for
all training samples xi; i¼ 1;2;…;N.

The original ELM assumes that oi ¼ ti, i¼ 1;…;N (or O¼ T in
matrix form), where T¼ ½t1;…; tN� is a matrix containing the
network target vectors. By using (2), the closed form of the
network output weights is

β̂ ¼H†T; ð3Þ
where H† is the Moore–Penrose generalized inverse of H. If HTH is
nonsingular, H† ¼ ðHTHÞ�1HT ; or when HHT is nonsingular,
H† ¼HT ðHHT Þ�1 [5]. Once the network output weights are
obtained, the network response for an unseen vector xnew is given
by

onew ¼ hðxnewÞβ: ð4Þ
To avoid the singularity problem when calculating the inverse

of HTH, a regularization term is introduced to minimize the norm
of the network output weights, which results in the following
objective of regularized ELM as

arg min
β

J RELM ¼ 1
2
JβJ2þλ

2

XN
i ¼ 1

Jξi J
2
2;

s:t:ξi ¼ ti�hðxiÞβ; i¼ 1;…;N ð5Þ
where ξiAR1�C is the error vector corresponding to xi and λ40 is
a regularization parameter. Therefore, the network output weights
in regularized ELM can be estimated as

β̂ ¼ HTHþ I
λ

� ��1

HTT: ð6Þ
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