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a b s t r a c t

Identifying promising compounds from a vast collection of potential compounds is an important and yet
challenging problem in chemical engineering. An efficient solution to this problem will help to reduce
the expenditure at the early states of chemical process. In an attempt to solve this problem, the industry
is looking for predictive tools that would be useful in testing optimal properties of a candidate compound
earlier. This paper explores the application of biogeography-based optimization (BBO) to achieve such
predictive work. BBO is a new evolutionary algorithm that is based on the science of biogeography. BBO is
a population-based search method that achieves information sharing by species migration. The perfor-
mance of BBO is compared with genetic algorithm (GA) and particle swarm optimization (PSO) on a set of
test functions and the cases of identifying promising compounds. Simulation results show that BBO is a
competitive method in determining an optimal solution to the optimization of promising compounds.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Finding global optima of complex chemical processes with
large search space is one of the primary goals in many scientific
investigations. For example, in the realm of compound design, the
chemical process approaches involve in solving global optimiza-
tion problems [1–3]. Scientists can often produce a large number
of compounds. However, only a few of them serve as good can-
didates for a potential compound. To find an effective compound
or series of compounds, scientists explore a large number of new
potential compounds, and then evaluate their efficacy and safety
based on the clinical symptoms and experimental responses. Such
chemical process takes many years and it is very costly. Recently,
the technology, known as combinatorial chemistry, is now being
widely applied in the chemical industry, and is getting interest in
several areas of chemical engineering. The work focuses on
tweaking the molecules to eliminate potential negative effects and
to improve the molecule's ability to interact with the body. An
important problem in combinatorial chemistry is how to design
the experiments to explore and optimize the high-dimensional
solution space while minimizing the number of trials to achieve an

optimal solution. For example, sampling conformational space in
order to determine molecular formulas of organic compounds
involves in finding a global maximum of a fitting function [4].
Several biology-inspired evolutionary computing methods are
used to solve such optimization problems because of their intui-
tive appeal and ability to solve hard optimization problems. The
methods used for compound design include genetic programming
(GP) [5] and genetic algorithm (GA) [6], which are based on the
concept of evolving solutions from less accurate ones. Evolutionary
algorithms frequently are used to a specific problem at hand, and
they are well-suited for the optimization of promising compounds
in chemical process.

Simon [7] initially proposed biogeography-based optimization
(BBO) in 2008 which is a new evolutionary algorithm for global
optimization. BBO is a population-based search algorithm based
on the model of the immigration and emigration of species
between habitats. In BBO, individuals, referred to as habitats, are
changed through information sharing between candidate solu-
tions. Migrations to solution features within the search space are
based on the goodness of the solutions to optimize individuals.
One distinctive feature of BBO is that the original population is
not discarded after each generation. It is rather modified by
migration. Another distinctive feature is that, for each generation,
BBO uses the fitness of each solution to determine its immigra-
tion and emigration rates. BBO has demonstrated good perfor-
mance on various single-objective benchmark functions [8–10].
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It has also been applied to real-world optimization problems,
including sensor selection [7], power system optimization [11],
groundwater detection [12] and satellite image classification [13].
In addition, a web-based BBO graphical user interface is used in
the reference [14].

The remainder of the paper is organized as follows. Section 2
explains the optimization model of promising compounds in
chemical process. Section 3 describes the BBO algorithm and lists
the pseudo-code required for its implementation. In Section 4, the
results of simulation experiments are given and the performance
of the algorithms is compared. The concluding remarks and topics
for future investigations are given in Section 5.

2. Combinatorial compound model

Identifying promising compounds from a vast collection of
feasible compounds is a challenging problem in chemical process.
A feasible compound involves in attaching reagents to each of
several locations along a core molecule. In a typical compound,
each attachment location may have tens or hundreds of potential
reagents, and as the numbers of locations and reagents increase,
the number of compounds increases exponentially. Because of the
vast number of potential compounds, the entire compound library
is rarely created in practice. For example, consider the feasible
compound presented in Fig. 1, where three positions require
additions. These three positions of the core molecule are denoted
by A, B and C. The different reagents can be added to each of those
positions. If each position has ten possible reagents denoted by xi,
that is, xA¼xB¼xC¼10, there are 103 possible compounds, among
which, we are constrained to create only a fraction in the
laboratory.

Indeed, the optimization methods could be applied to this
problem, and the goal is to obtain sets of reagents that maximize
the target efficacy of a compound, which is measured by its pre-
specified chemical property. From an experimenter's viewpoint,
the chemical property of interest of a compound can be viewed as
the response of the process, which is to be minimized. That is, the
response of interest y(x) is the desired chemical property of a
compound with reagents specified by x¼(x1, x2, …, xd), where d is
the number of independent locations. The response surface is
likely to have various shapes. Some parts of the surface are
smooth, other parts are filled with local optima, and others have
unexpected extreme peaks of activity. Hence, some random search
methods (e.g., genetic algorithms (GA), particle swarm optimiza-
tion (PSO)) are best to find a global optimum on such response in
which there are many local optima. Although we only consider
scalar response y in this paper, multi-objective response (e.g.,
optimization of more than one property) can also be accom-
modated by modeling the desired function of the compounds. On
the other hand, in practice the feasible compounds that satisfy the
essential constraints are more important to the scientists. These
constraints include some chemical properties [15]: chemical
reactivity, occurrence of toxicological features, molecular weight,
number of rotated bonds, and so on. So a more general viewpoint

is to formulate the problem as a constrained optimization func-
tion, and the response of process is selected as the objective
function and the other chemical properties are treated as
constraints.

3. Biogeography-based optimization

BBO is a new population-based global optimization algorithm
[7]. As its name implies, BBO is based on the study of the dis-
tribution of species over time and space. This study, which is a
subset of biology, is called biogeography [16]. Suppose that we
have a global optimization problem and a population of candidate
solutions (individuals). Each individual is considered to be analo-
gous to a habitat and is characterized by a habitat suitability index
(HSI). The value of HSI, which is the same as fitness in other
population-based optimization algorithms, and which measures
the goodness of the solution, depends on many features of the
habitat. A habitat with a high-HSI is a good solution, and a habitat
with a low-HSI is a poor solution. High-HSI solutions tend to share
their features with low-HSI solutions by emigrating solution fea-
tures to other habitats. Low-HSI solutions accept a lot of new
features from high-HSI solutions by immigration from other
habitats. Immigration and emigration tend to improve the solu-
tions and thus evolve a solution to the optimization problem.
Namely, BBO views the value of HSI as the objective function, and
the evolution procedure of BBO is to determine the solutions
which maximize the HSI by immigrating and emigrating features
of the habitats. In BBO, there are two main operators: migration
(which includes both emigration and immigration) and mutation.

Migration is a probabilistic operator that adjusts a habitat H.
We use the migration rates of each habitat to probabilistically
share features between habitats. The probability that Hi is mod-
ified is proportional to its immigration rate λi, and the probability
that the source of the modification comes from Hj is proportional
to the emigration rate μj. Migration is defined by

H HSIV SIV 1i j( ) ← ( ) ( )

In biogeography, an SIV is a suitability index variable which
characterizes the habitability of a region [7], that is, the HSI is
determined by many SIVs. In BBO, an SIV is a solution feature,
equivalent to a gene in GA. In other words, an SIV is a search
variable and the set of all possible SIVs is the search space from
which an optimal solution will be determined.

In BBO, each solution Hi has its own immigration rate λi and
emigration rate μi. They can be calculated as
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where I is the maximum possible immigration rate, E is the
maximum possible emigration rate, k(i) is the fitness rank of the
ith individual (1 is worst and n is best), and n is the number of
solutions in the population. I and E are often set to 1, or slightly
less than 1. Eq. (2) indicates that a good solution has relatively high
μ and low λ, while the converse is true for a poor solution. So the
immigration rate and the emigration rate are functions of the fit-
ness of the solution.

Because migration relies entirely on the quality of existing
solutions as well as migration topology, BBO will converge to the
global optimum if and only if the population already contains
features of the optimal solution. If one feature of the optimal
solution is missing from the population, it is impossible for BBO to
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Fig. 1. The core molecule of a compound with three reagents locations.
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