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h i g h l i g h t s

• Use the Filippov solution to study the dynamics of delayed memristor-based neural networks.
• Prove the existence and uniqueness of almost periodic solution of the neural network under some conditions.
• Obtain the global exponential stability of the almost periodic solution.
• Prove the existence and stability of periodic solution of delayed neural networks with periodic memristor.

a r t i c l e i n f o

Article history:
Received 26 January 2014
Revised and accepted 18 July 2014
Available online 28 July 2014

Keywords:
Memristor-based neural networks
Almost periodic solution
Global exponential stability

a b s t r a c t

In this paper, the existence, uniqueness and stability of almost periodic solution for a class of delayed
memristor-based neural networks are studied. By using a new Lyapunov function method, the neural
network that has a unique almost periodic solution, which is globally exponentially stable is proved.
Moreover, the obtained conclusion on the almost periodic solution is applied to prove the existence
and stability of periodic solution (or equilibrium point) for delayed memristor-based neural networks
with periodic coefficients (or constant coefficients). The obtained results are helpful to design the global
exponential stability of almost periodic oscillatory memristor-based neural networks. Three numerical
examples and simulations are also given to show the feasibility of our results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Periodic oscillation in the neural networks is an interesting
dynamical behavior, as many biological and cognitive activities
(e.g., heartbeat, respiration, mastication, locomotion, and memo-
rization) require repetition. It has been found applications in asso-
ciative memories (Nishikawa, Lai, & Hoppensteadt, 2004), pattern
recognition (Chen, Wang, & Liu, 2000; Wang, 1995), learning the-
ory (Ruiz, Owens, & Townley, 1998; Townley et al., 2000), and robot
motion control (Jin & Zacksenhouse, 2003). The studies of the pe-
riodic oscillation of various neural networks such as the Hopfield
network, cellular neural networks, and bidirectional associative
memories are all reported in the literature (see, for instance, Cao &
Chen, 2004; Cao &Wang, 2005; Chen &Wang, 2004, 2005; Huang,
Cao, & Ho, 2006; Tan & Tan, 2009 and references therein). Almost
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periodic functions, with a superior spatial structure, are a gener-
alization of periodic functions. Meanwhile, in practice, almost pe-
riodic phenomenon is more common than periodic phenomenon
(see, for instance, Levitan & Zhikov, 1982). For example, upon con-
sidering long-term dynamical behaviors, the periodic parameters
of the neural networks often turn out to experience certain per-
turbations, that is, parameters become periodic up to a small er-
ror. So, almost periodic oscillatory behavior is considered to be
more accordant with reality. There have been a great number of
results on almost periodic oscillation of the neural networks with
orwithout delay (see, for instance, Allegretto, Papini, & Forti, 2010;
Cao, Chen, & Huang, 2005; Huang & Cao, 2003, 2009; Huang et al.,
2006; Jiang, Zhang, & Teng, 2005; Levitan & Zhikov, 1982; Qin, Xue,
& Wang, 2013; Wang, 2010; Wang, Lu, & Chen, 2009 and Xiang &
Cao, 2009a, 2009b).

Memristor is a new circuit elements which possesses many
properties of resistors and shares the same unit of measurement
(ohm) and offers a nonvolatile memory storage with in a simple
device structure attractive for potential applications. Since Chua’s
work (Chua, 1971) in 1971, a series of properties of the memristor
are described, the usefulness of which in the modeling and
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understanding of various physical systems is shown (see Chua,
1971; Corinto, Ascoli, & Gilli, 2011; Itoh & Chua, 2008, 2009;
Merrikh-Bayat & Shouraki, 2011a, 2011b; Mullins, 2009; Pershin
& Di Ventra, 2010a, 2010b, 2011; Petras, 2010; Strukov, Snider,
Stewart, & Williams, 2008; Ventra, Pershin, & Chua, 2009).

Among of them twoproperties of thememristor attractedmuch
attention, which are its memory characteristic and its nanome-
ter dimensions. The memory property and latching capability en-
able us to think about newmethods for nano-computing, with the
nanometer scale device providing a very high density and is less
power hungry. From the previous work it follows that thememris-
tor exhibits features just as the neurons in the human brain have.

It is well known that a neural networks can be implemented
by circuits such as that the Hopfield neural network model can
be implemented in a circuit where the self feedback connection
weights are implemented by resistors. Suppose that we use
memristors instead of resistors in the circuits, then we can build a
newmodel, that is a memristor-based neural networks. Especially,
it has been shown that memristors have been proposed to work
as synaptic weights in artificial neural networks. In Hu and Wang
(2010), a piecewise-linear mathematical model of the memristor
is first given to characterize its feature of pinched hysteresis and
a recurrent neural network model with time delays based on
this model is then proposed due to the natural implementation
of learning the weights (e.g., Hebbian learning). Such a model
is basically a state-dependent nonlinear switching dynamical
system. Soon afterwards many scholars dedicated to study
dynamical behaviors of the memristor-based neural networks
model. (see, for instance, Chen, Zeng, & Jiang, 2014; Hu & Wang,
2010; Pershin & Di Ventra, 2010a; Wu, Wen, & Zeng, 2012; Wu &
Zeng, 2012, 2013; Wu, Zeng, Zhu, & Zhang, 2011; Zhang, Shen, &
Sun, 2012; Zhang, Shen, &Wang, 2013). However, to the best of our
knowledge, there exists no result on the almost periodic solution
of delayed memristor-based neural networks (DMNN). The main
purpose of this paper is to give the conditions for the existence and
exponential stability of the almost periodic solutions for a DMNN.
By applying new Lyapunov function techniques, we derive some
new sufficient conditions ensuring the existence, uniqueness and
exponential stability of the almost periodic solution, which are
new and they complement previously known results. Moreover,
the obtained conclusion on the almost periodic solution is applied
to prove the existence and stability of periodic solution (or
equilibrium point) for delayed memristor-based neural networks
with periodic coefficients (or constant coefficients).

The rest of the paper is organized as follows. A DMNN model is
introduced and some necessary definitions are given in Section 2.
A sufficient criterion ensuring the global existence and bounded-
ness of any solutions, the existence and exponential stability of an
almost periodic solution of the networks in Section 3. The applica-
tions of our main results which are the existence, uniqueness and
stability of periodic solution and equilibrium point in Section 4.
Three examples and simulations are obtained in Section 5. Finally,
the paper is concluded in Section 6.

2. Model description and preliminaries

Referring to some relevant works in Chen et al. (2014); Hu and
Wang (2010); Pershin and Di Ventra (2010a);Wu et al. (2012);Wu
and Zeng (2012); Wu and Zeng (2013); Wu et al. (2011); Zhang
et al. (2012) and Zhang et al. (2013) and which deal with the
detailed construction of some general classes of memristor-based
recurrent neural networks from the aspects of circuit analysis and
memristor physical properties. Consider a class of DMNN model

described by the following equation:

dxi(t)
dt

= −ci(t)xi(t)+

n
j=1

aij(t, x(t))fj(xj(t))

+

n
j=1

bij(t, x(t − τij))gj(xj(t − τij))+ Ii(t), (2.1)

for i = 1, 2, . . . , n, where n corresponds to the number of units in a
neural network; xi(t)denotes the state variable associatedwith the
ith neuron; fij(xi(t)) and gij(xj(t − τij)) denote the output of the jth
unit at time t and t −τij, respectively; ci(t) > 0 represents the rate
withwhich the ith unit will reset its potential to the resting state in
isolationwhen disconnected from the network and external inputs
at time t; Ii(t) denotes the external bias on the ith unit at time t;
τij corresponds to the transmission delay of the ith unit along the
axon of the jth unit; aij(t, x(t)) and bij(t, x(t − τij)) are memristor-
based weights, denote the strengths of the jth unit on the ith unit
at time t and time t−τij, respectively, which are defined as follows

aij(t, x) =


âij(t), hj(x) > Tj,
ǎij(t), hj(x) < Tj,

(2.2)

and

bij(t, x) =


b̂ij(t), hj(x) > Tj,
b̌ij(t), hj(x) < Tj,

(2.3)

for i, j = 1, 2, . . . , n and t ∈ R, aij(t, x) = âij(t) or ǎij(t) when
hj(x) = Tj, where hj : Rn

→ R(j = 1, 2, . . . , n) are threshold level
functions, Tj ∈ R(j = 1, 2, . . . , n) are threshold level, âij(t), ǎij(t),
b̂ij(t) and b̌ij(t) are all continuous functions.

Remark 2.1. In the existing literature (see Chen et al., 2014; Hu
& Wang, 2010; Pershin & Di Ventra, 2010a; Wu et al., 2012; Wu
& Zeng, 2012, 2013; Wu et al., 2011; Zhang et al., 2012, 2013),
consider only the case hj(x) = |xj|(j = 1, . . . , n). From this point,
we can see that DMNN (2.1) is of a more general form than ever.

Suppose E ⊂ Rn, then x → F(x) is called a set-valued map
from E to Rn, if for each point x ∈ E, there exists a nonempty set
F(x) ⊂ Rn. A set-valued map F with nonempty values is said to be
upper semicontinuous at x0 ∈ E, if for any open set N containing
F(x0), there exists a neighborhood M of x0 such that F(M) ⊂ N .
Themap F(x) is said to have a closed (convex, compact) image if for
each x ∈ E, F(x) is closed (convex, compact). Let Cτ := C([−τ , 0])
denote a Banach space of all continuous functionsϕ : [−τ , 0] → R.
Sometime, for x ∈ Rn, we write x ∈ Cτ means x(s) ≡ x in [−τ , 0].
For ϕ ∈ Cτ , let ∥ϕ∥c = sups∈[−τ ,0] ∥ϕ(s)∥. Given the function
V : Rn

→ R, ∇V denotes the gradient of V and ∂V denotes the
Clarke’s generalized gradient of V .

The initial states associated with DMNN (2.1) are of the form

xi(s) = ϕi(s), s ∈ [−τ , 0], i = 1, . . . , n (2.4)

where τ = max1≤i,j≤n{τij}.
Let xt ∈ C([−τ , 0], Rn) be defined by xt(s) = x(t + s),−τ ≤

s ≤ 0, and the initial states (2.4) can be rewritten as

x0 = ϕ ∈ Cτ := C([−τ , 0], Rn). (2.5)

Remark 2.2. From (2.2)–(2.3), aij(t, x) and bij(t, x) can be discon-
tinuous in x ∈ Λj if hj(x) = Tj have a solution set Λj and b̂ij(t) ≠

b̌ij(t).
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