
Neural Networks 60 (2014) 17–24

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Simple randomized algorithms for online learning with kernels
Wenwu He a,b,∗, James T. Kwok b

a Department of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian 350118, China
b Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

a r t i c l e i n f o

Article history:
Received 9 April 2014
Received in revised form 7 July 2014
Accepted 17 July 2014
Available online 28 July 2014

Keywords:
Online learning
Kernel methods
Stochastic strategies
Budget

a b s t r a c t

In online learningwith kernels, it is vital to control the size (budget) of the support set because of the curse
of kernelization. In this paper, we propose two simple and effective stochastic strategies for controlling
the budget. Both algorithms have an expected regret that is sublinear in the horizon. Experimental results
on a number of benchmark data sets demonstrate encouraging performance in terms of both efficacy and
efficiency.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Online learning is a popular and natural approach for solving
real-time and life-long learning problems, where instances arrive
sequentially. Online learning is also advantageous in large-scale
learning as it is often efficient and highly competitive (Shalev-
Shwartz, 2007, 2011). At each iteration t , an online learning
algorithm produces a function estimate ft ∈ F , and then suffers
a loss ℓt(ft). Here, we assume that the function space F is closed
and convex, and ℓt(·) is convex. To evaluate the performance of the
algorithm, it is customary tomeasure its regretRT =

T
t=1(ℓt(ft)−

ℓt(f )), where T is the horizon, w.r.t. a competitor f ∈ F .
A standard online learning algorithm is the gradient descent

(GD) (Zinkevich, 2003), which updates ft as

ft+1 = ΠF (ft − ηgt). (1)

Here, gt is the gradient (or subgradient) of ℓt w.r.t. ft , ΠF is the
Euclidean projection onto F , and η is the stepsize. Its regret is
O(

√
T ), and cannot be improved in general (Abernethy, Bartlett,

Rakhlin, & Tewari, 2008). To extend linear models for nonlinear
function learning, the kernel trick has been widely used (Kivinen,
Smola, & Williamson, 2004; Schölkopf & Smola, 2002). An input
instance x is first mapped to φ(x) in a reproducing kernel Hilbert
space (RKHS) H , where φ is a feature map induced by the kernel
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κ(·, ·) of H . The inner product ⟨xi, xj⟩ between two instances
xi, xj in the linear algorithm is then replaced by κ(xi, xj) =

⟨φ(xi), φ(xj)⟩.
A bottleneck for kernelized online learning is that the set St of

support vectors (SV’s) in ft keeps expanding as learning proceeds.
Subsequently, so are the memory and time costs. It is thus neces-
sary to keep |St | under control with the use of budget (Crammer,
Kandola, & Singer, 2003; Weston, Bordes, & Bottou, 2005). In re-
cent years, various budget algorithms have been proposed, such as
the Projectron and its variants (He &Wu, 2012; Orabona, Keshet, &
Caputo, 2009), randomized budget perceptron (RBP) (Cesa-Bianchi
& Gentile, 2006; Sutskever, 2009) and the simplified Forgetron
(Dekel, Shalev-Shwartz, & Singer, 2008; Sutskever, 2009). These al-
gorithms are mainly for classification and only mistake bounds are
provided. A framework for algorithms with sublinear regret (as in
(1)) is lacking and highly desirable in the budget online learning
literature. With such a regret guarantee, we can directly general-
ize existing budget algorithms to regression and other problems.
Moreover, though some budget algorithms (such as the Projectron)
have remarkable classification accuracies, they have to update the
inverse of a Gram matrix in each iteration. This costs O(B2) time
and memory, where B is the budget. Besides, setting an appropri-
ate budget for a particular learning problem can be difficult.

In this paper, we propose a simple but effective stochastic strat-
egy for online learning with budget. The idea is to keep the excess
regret of the budget algorithm over its non-budget counterpart
small, while still controlling the growth of the budget. In particu-
lar, two algorithms, both with O(B) memory and time, will be pre-
sented.
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Algorithm 1 Online learning with kernels (OLK).
1: Input: Learning rate sequence {ηt > 0}.
2: Initialize: S1 = ∅, f1 = 0.
3: for t = 1, 2, . . . , T do
4: receive input xt ;
5: suffer loss ℓt(ft);
6: compute the subgradient gt ∈ ∂ℓt(ft);
7: if gt = 0 then
8: ft+ 1

2
= ft ;

9: St+1 = St ;
10: else
11: ft+ 1

2
= ft − ηtgt ;

12: St+1 = St ∪ {t};
13: end if
14: ft+1 = ΠF (ft+ 1

2
).

15: end for

• The first one is based on dynamically increasing the budget
in a stochastic manner. This yields a sublinear expected regret
of O(T

1+γ
2 ) (where 0 < γ < 1), and a budget of (variable) size

O(T 1−γ ) which is also sublinear in T .
• The second algorithm allows the use of a fixed budget, which

may be more convenient in some applications. When the pre-
assigned budget is exceeded, the algorithm randomly removes
an existing SV. This also yields a sublinear expected regret of
O(

√
T ) and a budget of size O(

√
T ).

The rest of this paper is organized as follows. Section 2 presents
a baseline algorithm for non-budget kernelized online learn-
ing. The stochastic strategy for (kernelized) online learning with
budget, with two specific budget algorithms, is demonstrated in
Section 3. A discussion on the related work is in Section 4. Experi-
mental results are reported in Section 5, and the last section gives
some concluding remarks.

2. Basic algorithm for Online Learning with Kernels

Given a sequence {(xt , yt)}, with xt coming from the input
domain X ⊆ Rd, yt from output domain Y ⊆ R, and t ∈ [T ] ≡

[1, 2, . . . , T ], the learner aims to learn the underlying function
f : X → Y in an online manner. Let H be the RKHS associated
with the kernel function κ , such that κij ≡ κ(xi, xj) = ⟨φi, φj⟩ and
φt ≡ φ(xt) ∈ H . We assume that

∥φt∥ ≤ 1, ∀t ∈ [T ]. (2)

Unless explicitly stated, all the norms are ℓ2-norms. Moreover, let
K be the Gram matrix with elements κij’s,

F = {f ∈ H | ∥f ∥ ≤ U} (3)

for some given U > 0, and ft ∈ F be the function learned at itera-
tion t . Denote the loss of ft at iteration t by ℓt(ft), and gt ∈ ∂ℓt(ft)
be its gradient (or subgradient). For any f ∈ H , the operation

ΠF (f ) = argmin
g∈F

∥g − f ∥ = min

1,

U
∥f ∥


f (4)

projects f onto F .
Algorithm 1 shows a basic kernel extension of GD in (1), and

will be called Online Learning with Kernels (OLK) in the sequel. Let
{ft ∈ F }t∈[T ] be a sequence obtained by OLK. The following regret
can be easily obtained from (Zinkevich, 2003).

Theorem 1. (i) Using a constant stepsize η > 0, the regret of OLK is
bounded as

RT ≤
∥f1 − f ∥2

2η
+

η

2

T
t=1

∥gt∥2. (5)

Assume that maxt∈[T ] ∥gt∥2
≤ G. We have RT ≤ 2U

√
GT on

setting η = 2UG−
1
2 T−

1
2 .

(ii) With a dynamic stepsize

ηt = ηt−
1
2 , (6)

we have

RT ≤

√
T max

t∈[T ]

∥ft − f ∥2

2η
+

η

2

T
t=1

∥gt∥2

√
t

. (7)

On setting η =
√
2UG−

1
2 , we have RT ≤

√
2


2U

√
GT


.

The constant stepsize η can be difficult to set unless T is known.
The OGD algorithm (Kivinen et al., 2004; Zhao, Wang, Wu, Jin, &
Hoi, 2012), which uses a constant stepsize, also suffers from the
same problem. Moreover, OGD has a regret of

RT ≤
λT + η−1

2
∥f1 − f ∥2

+ η

T
t=1

∥gt∥2,

where λ > 0 is a regularization parameter. It is worse than the
bound in (5) by a factor of 1

2 on settingλT = η−1 (Zhao et al., 2012).
On the other hand, with the dynamic stepsize scheme in (6),

ηt does not depend on T , and the learner can tune η for optimal
performance based on a subset of samples. The price to pay is that
its regret is only

√
2-competitive with that of the fixed stepsize.

We assume that at iteration t , the change which may be added
to ft can be written as αtφt for some αt ∈ R, i.e.,
− ηtgt = αtφt . (8)
This holds for many commonly used loss functions. For example,
for the hinge loss ℓt(ft) = max{0, 1 − yt ft(φt)}, we have gt =

−ytφt when ℓt(ft) > 0. Similarly, for the square loss ℓt(ft) =
1
2 (yt − ft(φt))

2, we have gt = −(yt − ft(φt))φt . Hence, ft can be
written as ft =


τ∈St ατφτ . On non-separable problems or noisy

data, the number of support vectors involved in ft may thus in-
creasewith t , and both the update and prediction timewill become
unlimited. This hinders the application of online learningwith ker-
nels to large-scale problems.

When a new SV is to be added, ft+ 1
2

=


τ∈St ατφτ +αtφt . Note
that the projection ΠF (ft+ 1

2
) (defined in (4)) involves computing

∥ft+ 1
2
∥
2, which can be easily obtained as:ft+ 1

2

2
= ∥ft∥2

+ α2
t κtt + 2αt


τ∈St

ατκτ t

= ∥ft∥2
+ α2

t κtt + 2αt ft(xt). (9)
Here, ft(xt) is the prediction at iteration t and needs to be
computed anyway. By storing ∥ft∥2 in each iteration, computing
(9) is inexpensive in terms of both time and memory.

3. Randomized strategies for online learning with budget

In online learning with budget, we restrict each ft to have a
maximum of B SV’s, where B > 0. The budget version of OLK
can be obtained by replacing ft+ 1

2
in Theorem 1 with f B

t+ 1
2
, whose

expression is to be specified.

Proposition 1. For any stepsize sequence {ηt} (with ηt > 0), the
regret for the budget version of OLK is bounded by

RB
T ≤ R∼B

T +

T
t=1

1
2ηt


∥et∥2

+ 2

ft+ 1

2
− f , et


, (10)

where et = f B
t+ 1

2
− ft+ 1

2
, and R∼B

T =
T

t=1
∥ft−f ∥2−∥ft+1−f ∥2

2ηt
+

ηt∥gt∥2

2 .
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