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a b s t r a c t

Recent researches have provided strong circumstantial support to dendrites playing a key and possibly
essential role in computations. In this paper, we propose an unsupervised learnable neuron model by
including the nonlinear interactions between excitation and inhibition on dendrites. The model neuron
self-adjusts its synaptic parameters, so that the synapse to dendrite, according to a generalized delta-rule-
like algorithm. The model is used to simulate directionally selective cells by the unsupervised learning
algorithm. In the simulations, we initialize the interaction and dendrite of the neuron randomly and
use the generalized delta-rule-like unsupervised learning algorithm to learn the two-dimensional multi-
directional selectivity problem without an external teacher’s signals. Simulation results show that the
directionally selective cells can be formed by unsupervised learning, acquiring the required number of
dendritic branches, and if needed, enhanced and if not, eliminated. Further, the results show whether a
synapse exists; if it exists, where and what type (excitatory or inhibitory) of synapse it is. This leads us to
believe that the proposed neuron model may be considerably more powerful on computations than the
McCulloch–Pitts model because theoretically a single neuron or a single layer of such neurons is capable
of solving any complex problem. These may also lead to a completely new technique for analyzing the
mechanisms and principles of neurons, dendrites, and synapses.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The humanbrain, built of about 1011 neurons and 1015 intercon-
nections, is of staggering complexity. The fundamental structure
of a neuron consists of a cell body, an axon, and a dendrite. Neu-
rons have different functions depending on the branch patterns of
their dendrites, i.e., the function changes with differences in these
structures (Cajal, 1909). The first model of a neuron was proposed
by McCulloch and Pitts in 1943 and has been widely used as a ba-
sic unit for modern researches on neural networks (McCulloch &
Pitts, 1943). However, thismodel has been criticized as being over-
simplified from the viewpoint of the properties of real neurons
and the computation that they perform because only one nonlin-
ear term (thresholding on cell body) is included in the model and
the nonlinear mechanisms of dendrites are not considered (Lon-
don&Häusser, 2005).Meanwhile, recent researches have provided
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strong circumstantial support for dendrites playing a key role in
the overall computation performed by the neuron (Agmon-Snir,
Carr, & Rinzel, 1998; Anderson, Binzegger, Kahana,Martin, & Segev,
1999; Euler, Detwiler, & Denk, 2002; Magee, 2000; Single & Borst,
1998; Stuart, Spruston, & Häusser, 2008). Based on these exper-
imental findings, Larkum, Zhu, and Sakmann (2001), and Rhodes
and Llinás (2001) modeled apical dendrites as a compartment dis-
tinct from the somatic compartment, and were successful in re-
producing the diverse range of neuronal firing patterns (Kepecs,
Wang, & Lisman, 2002; Mainen & Sejnowski, 1996). After the ex-
perimental observation of localized regenerative spikes in the fine
distal dendrites (Schiller, Major, Koester, & Schiller, 2000; Schiller,
Schiller, Stuart, & Sakmann, 1997; Wei et al., 2001). Poirazi, Bran-
non, andMel (2003a, 2003b) proposed a simplified two-layer neu-
ral network model where individual dendritic subunits perform
a sigmoidal thresholding nonlinear operation on their inputs. This
model provided a useful abstraction on the spatial integrative func-
tion of a pyramidal cell (Wang & Liu, 2010).

However, they all are bound to require the addressing of the
relevant synaptic input to the relevant locality in the dendrites
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(Koch, Poggio, & Torre, 1983; Koch, Poggio, Torre, & Casey, 1982).
Recently, many algorithms for learning such nonlinear process-
ing have been proposed. Instead of using a weighted sum, Durbin
and Rumelhart used a weighted product as a computational unit
for feedforward learning networks of the backpropagation type
(Durbin & Rumelhart, 1989). Other models of a nonlinear neuron
and algorithm for learning, such as the sigma–pi unit in which the
output activation is calculated as the weighted sum of the prod-
ucts of independent sets, or clusters of input values (Mel, 1990;
Rumelhart & Mcclelland, 1986), and the cluster in which each in-
put has a synaptic weight (the term ‘‘cluster’’ is used to refer to in-
puts that can affect the activation received by a particular synapse)
(Spratling & Hayes, 2000), have also been proposed. However, they
could not solve the 3-bit parity problem. Furthermore, these mod-
els used ‘‘weights’’ to represent the degree of clustering between
synapses. Thus, all sense of locality was lost, and these models
could not represent local interactions within a fixed dendritic tree.
In this sense, they are not biologically plausible models of nonlin-
ear dendritic processing (Spratling & Hayes, 2000).

Koch, Poggio, and Torre found that in the dendrites of a retinal
nerve cell, if an activated inhibitory synapse is closer than an exci-
tatory synapse to the cell body, the excitatory synapsewill be inter-
cepted. They suggested that the interaction between synapses and
the action at the turning point of a branch be considered in terms
of logical operations (Koch et al., 1983, 1982). Several experimen-
tal examples such as direction selectivity in retinal ganglion cells
(Taylor, He, Levick, &Vaney, 2000) and coincidence detection in the
auditory system (Segev, 1998) have provided strong circumstan-
tial support to Koch’s model. Recent theoretical and experimental
studies using the neuron simulation environment also suggested
that such an inhibitory effect be located in a single dendritic branch
(Liu, 2004) and dendritic computation results from the interaction
of excitatory and inhibitory synaptic inputs (Fortier & Bray, 2013).
However, for a specific given task, particularly a complex task, it
is usually very difficult for Koch’s model to identify what type of
synapse (excitatory or inhibitory) is needed, where the synapse
should be located, which branch of the dendrite is needed, and
which one is not needed (Destexhe &Marder, 2004). Koch pointed
out that we need a learning algorithm based on the plasticity in
dendrites to answer these questions and understand how the con-
ductance of a neuron’s cell body and dendriticmembrane develops
in time (Koch, 1997). Fortunately, a wide variety of plasticity
mechanisms have been identified in pyramidal neurons (Artola,
Brocher, & Singer, 1990; Bi & Poo, 1998; Dringenberg, Hamze,
Wilson, Speechley, & Kuo, 2007; Gu, 2003; Losonczy, Makara, &
Magee, 2008; Makara, Losonczy, Wen, & Magee, 2009; Markram,
Lübke, Frotscher, & Sakmann, 1997; Ngezahayo, Schachner, & Ar-
tola, 2000; Reynolds & Wickens, 2002; Sjöström, Rancz, Roth, &
Häusser, 2008; Sjöström, Turrigiano, & Nelson, 2001). Meanwhile,
Holtmaat and Svoboda showed experimental evidence to support
structural synaptic plasticity and learning (Holtmaat & Svoboda,
2009). In particular, recent experimental evidence suggested that
back-propagating action potentials can provide a feedback signal
to the input layers and may be involved in the process of synaptic
plasticity (Larkum, Zhu, & Sakmann, 1999; Stuart &Häusser, 2001).

In our previous papers (Tang, Kuratu, Tamura, Ishizuka, &
Tanno, 2000; Tang, Tamura, Okihiro, & Tanno, 2000),weproposed a
neuronmodelwith interaction among synapseswith dendrites and
successfully trained the model to learn the directionally selective
problem and the depth rotation problem (Sekiya, Aoyama, Tamura,
& Tang, 2001; Sekiya, Wang, Aoyama, & Tang, 2001; Sekiya, Zhu,
Aoyama, & Tang, 2000; Takeuchi, 2010; Tamura, Tang, & Ishii,
2002; Tamura, Tang, Okihiro, & Tanno, 1999). However, the train-
ings were all performed by the supervised learning of a mecha-
nism that compares the desired and the actual outputs and feeds
back the processed corrections. Such a supervised training mech-
anism is biologically implausible; it is difficult to conceive such a

training mechanism in the brain. Recently, Legenstein and Maass
provided mathematical proof that these plasticity mechanisms in-
duced a competition between dendritic branches, and such den-
dritic competition enabled a single neuron to acquire nonlinear
computational capabilities, such as the capability to bind multi-
ple input features in a self-organizedmanner (Legenstein &Maass,
2011). However, even having used nonlinear branches, the model
could not solve such non-linearly separated problems as a sim-
ple exclusive OR (XOR) function. Spratling and Hayes presented a
model of an initially standard linear node that uses unsupervised
learning to find clusters of inputs within which inactivity at one
synapse can occlude the activity at the other synapses. However,
because they used ‘‘weights’’ to represent the degree of cluster-
ing between synapses, all sense of locality was lost, and this model
failed to include local interactions within a fixed dendritic tree. In
this sense, it is not a biologically plausible model of nonlinear den-
dritic processing (Spratling & Hayes, 2000). In this paper, we as-
sume that neurons learning to compute what they compute and
develop an unsupervised learnable neuron model with interaction
among synapses of a dendrite. The unsupervised learning algo-
rithm for a single layer of such neurons requires no teaching signal
for the output, and hence, there are no comparisons with the pre-
determined ideal responses. The training set consists solely of in-
put vectors, and the desired output patterns are obtained from the
input patterns. We show how such an unsupervised rule enables
the neurons to decide their synaptic connections and delete the
unnecessary synaptic connections and dendritic branches.We also
show that such an unsupervised learning algorithm can be used to
learn two-dimensional eight-directionally selective problems.

2. Model and learning

2.1. Model

From measurements made using histological materials, Koch,
Poggio, and Torre found that the interactions between excitation
and inhibition can be strongly nonlinear, and shunting inhibition
can specifically veto an excitatory input if it is located on the direct
path to the soma (Koch et al., 1983, 1982). Fig. 1 shows a model
that implements the idea. Here, if the inhibitory interaction is de-
scribed as an AND NOT gate, the operation implemented in Fig. 1
could be read as

u = x1 · x2 (1)

where x2 denotes an excitatory input and x1 represents an in-
hibitory input. Each input is either logical 0 or 1. Thus, the signal to
the cell body (soma) becomes u = 1 when and only when x1 = 0
and x2 = 1.

Fig. 2(a) shows an idealized dendrite of a γ cell, receiving ex-
citatory and inhibitory synapses distributed from the tip to the
soma. As shown in Fig. 2(a), most γ cells have a small cell body
and dendrites that usually have only one branch (Koch et al., 1982).
Koch, Poggio, and Torre showed that a given excitatory inputwould
be effectively voted by the inhibitory inputs on the direct path to
the soma whereas the remaining inputs essentially remain unaf-
fected by all other more distal inhibitory synapses (Destexhe &
Marder, 2004; Koch et al., 1983). Thus, the operation implemented
in Fig. 2(a) can be read as

u = x1 · x2 + x1 · x3 · x4, (2)

and Fig. 2(a) can also be represented by Fig. 2(b).
Comparedwith a γ cell, the dendrite of a δ cell has considerably

more branches (Koch et al., 1982). A δ cell is shown in Fig. 3(a). The
operation implemented can be expressed as follows:

u = x7 · x8 + x5 · x6 + x1 · x2 + x1 · x3 · x4 (3)

and thus, Fig. 3(a) can also be re-drawn as Fig. 3(b).
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